首页|基于改进遗传算法的电商零售商家库存优化研究

基于改进遗传算法的电商零售商家库存优化研究

扫码查看
库存优化指为应对需求不确定性,考虑订货点和交货期因素,降低库存系统成本.本文首先构建数学规划模型,将安全库存水平策略(s、S)和每日补货量作为核心决策变量,目标是最小化库存总成本(持有和缺货成本)、库存周转天数订购成本,然后引入 0-1 辅助变量线性化处理非线性约束,并使用Gurobi和COPT两种求解器对模型进行数值分析和比较,同时进一步提出改进遗传算法在库存优化中的应用,开创性地设计新颖的编码方式,有效增强求解的效率和准确性.算例表明,此库存优化降低了需求不确定性,能灵活应对零售需求中多种需求模式,并针对(s,S)政策与优化的库存持有量和订单数量相结合,实现了最低的库存成本和周转天数,最终实现高效的库存管理和采购决策.
Research on Inventory Optimization of E-Commerce Retail Merchants Based on Improved Genetic Algorithm
Inventory optimization refers to reducing the cost of inventory system by considering the factors of order point and delivery time to deal with the uncertainty of demand.This paper first constructs a math-ematical planning model,taking the safety inventory level strategy(s,S)and daily replenishment volume as the core decision variables,with the goal of minimizing the total inventory cost(holding and out costs)and the ordering cost of inventory turnover days.Then 0-1 auxiliary variables are introduced to linearize the nonlinear constraints,and Gurobi and COPT solvers are used to numerically analyze and compare the models.At the same time,the application of genetic algorithm in inventory optimization is further pro-posed,and a novel coding method is designed in a pioneering way to effectively enhance the efficiency and accuracy of solution.The example shows that this inventory optimization reduces the demand uncertainty,flexibly responds to multiple demand patterns in retail demand,and combines the(s,S)policy with the op-timized inventory holding and order quantity to achieve the lowest inventory cost and the number of inven-tory turnover days,and finally realizes efficient inventory management and purchasing decisions.

inventory optimizationmathematical programmingGurobiCOPTimproved genetic algorithm

侯振春、叶紫薇、潘佑炫、苌道方

展开 >

上海海事大学 物流科学与工程研究院,上海 201306

库存优化 数学规划 Gurobi COPT 改进遗传算法

2024

上海管理科学
上海市管理科学协会

上海管理科学

CHSSCD
影响因子:0.466
ISSN:1005-9679
年,卷(期):2024.46(3)
  • 13