首页|基于多智能体深度强化学习的多星观测任务分配方法

基于多智能体深度强化学习的多星观测任务分配方法

扫码查看
为应对多星环境中复杂多约束条件下的任务分配场景,提出一种多星自主决策观测任务分配算法,该算法采用基于集中式训练、分布式执行的多智能体深度强化学习算法.通过这种方式训练后的卫星智能体,即使在没有中心决策节点或通信受限的情况下,仍具有一定的自主协同能力及独立实现多星观测任务的高效分配能力.
Multi-Satellite Observation Task Allocation Method Based on Multi-Agent Deep Reinforcement Learning
To address the task allocation scenario under complex and constrained conditions in a multi-satellite environment,a multi-satellite autonomous decision-making observation task allocation algorithm is proposed.The algorithm uses a multi-agent deep reinforcement learning algorithm based on centralized training and distributed execution.The satellite agents trained by this algorithm have certain autonomous collaboration capabilities and the ability to independently achieve the efficient allocation of multi-satellite observation tasks even if there is no central decision-making node or communication restriction.

multi-agent systemdeep reinforcement learningmulti-satellite systemmulti-agent deep deterministic policy gradient(MADDPG)mission planning

王桢朗、何慧群、周军、金云飞

展开 >

上海卫星工程研究所,上海 201109

上海航天技术研究院,上海 201109

多智能体系统 深度强化学习 多星系统 多智能体深度确定性策略梯度算法 任务规划

2024

上海航天(中英文)
上海航天技术研究院

上海航天(中英文)

CSTPCD
影响因子:0.166
ISSN:2096-8655
年,卷(期):2024.41(1)
  • 26