首页|常推力机动模型在低轨卫星定轨预报中的应用

常推力机动模型在低轨卫星定轨预报中的应用

扫码查看
轨道机动控制在低轨卫星在轨活动中十分常见,尤其近年来电推进技术的发展,其具备比冲高、推力稳定的特性,在低轨卫星中得到广泛应用.轨道机动控制会引起轨道参数变化,需要通过定轨手段,确定控后轨道,而常规定轨方法不考虑机动模型,需要一段时间的无轨控的测量数据进行定轨,由于短时间内无法获取足够的测量数据,尤其针对电推进器卫星,单次机动时间长,且控制频次高,无轨控测量数据更为有限,导致估计大气阻力系数误差偏大,通常不估计,预报精度相对有限,只能降低轨道控制频次,获取更多测量数据定轨,导致轨控时长增加.因此,考虑在定轨模型中加入机动模型,对推进器的推力大小和方向构建模型,并引入推力大小和方向变量,利用轨控阶段的测量数据,实现大气参数估计、推力器推力大小和方向估计,利用最小二乘法实现对机动状态下的推进器摄动模型构建与求解,获取相对可靠的轨道根数和大气参数,通过实际GNSS数据和轨道机动验证,采用机动模型的定轨精度与无轨控阶段的定轨精度基本一致,并且由于采用更长的测量数据,可以获取更为可靠的大气阻力系数,提高频繁机动情况下的低轨卫星预报精度.
Application of Constant Thrust Maneuvering Model in Orbit-determinant and Prediction of Low Earth Orbit Satellites
Orbital maneuvering control is very common in in-orbit operations of low Earth orbit(LEO)satellites.Particularly,with the increasing popularity of electric propulsion technology in recent years,orbital maneuvering control has been widely used in LEO satellites,owing to its high specific impulse and stable thrust.Orbital maneuvering control will cause changes in the orbital parameters,and thus it is necessary to determine the post-control orbit by means of orbit-determination.However,traditional orbit-determination method does not consider the maneuver model,and requires measurement data without orbit control in a period of time.Since it is not possible to obtain enough measurement data within a short period of time,especially for electric propulsion satellites,the time of single maneuver is long,the control frequency is high,and the measurement data without orbit control is very limited,resulting in a large error in estimating the atmospheric drag coefficient.Therefore,the atmospheric drag coefficient is usually not estimated,and thus the forecast accuracy is relatively limited.In order to obtain more measurement data for orbit-determination,the frequency of orbit control is usually reduced,leading to longer and more frequent maneuver durations.In this context,a maneuver model is incorporated into the orbit determination process,considering the thrust magnitude and thrust direction of the thruster.By leveraging the measurement data during the control phase,this approach can simultaneously estimate the atmospheric parameters,the thruster thrust magnitude,and the thruster thrust direction.The least squares method is used to construct and solve the thruster perturbation model under maneuvering states,and the reliable orbit elements and atmospheric parameters are obtained.The actual global navigation satellite system(GNSS)data and orbital maneuvering verification show that the orbit-determination accuracy of the maneuvering model is basically consistent with that of the no-orbit-control phase,and more reliable atmospheric drag coefficients can be obtained due to the use of measurement data in a longer period of time.This ultimately enhances the prediction accuracy of LEO satellites under frequent maneuvers.

low Earth orbit(LEO)satellitemaneuvering modelthrust magnitudethrust directionorbit-determinationprediction accuracy

赵磊、吴凌根、吴新林、陈倩茹、何镇武

展开 >

北京航天驭星科技有限公司,北京 100071

天津大学 海洋科学与技术学院,天津 300072

低轨卫星 机动模型 推力大小 推力方向 定轨 预报精度

2024

上海航天(中英文)
上海航天技术研究院

上海航天(中英文)

CSTPCD
影响因子:0.166
ISSN:2096-8655
年,卷(期):2024.41(6)