首页|基于曲线坐标的非线性椭圆相对动力学问题

基于曲线坐标的非线性椭圆相对动力学问题

扫码查看
针对现有航天器相对运动解析解精度不足的问题,首次在曲线坐标系下进行建模分析,计算航天器非线性椭圆相对运动的解析解.利用贝塞尔函数求解开普勒方程,将航天器相对运动在各个方向的分量表示为傅里叶的形式,分离出航天器相对运动状态关于时间的常数项、长期项、长周期项和短周期项.在此基础上,引入虚拟航天器,计算椭圆参考轨道相对运动的解析解.对航天器相对运动解析解的误差进行评估,分析影响解析解精度的主要因素,验证该解析解在较大的偏心率和轨道倾角条件下精度损失较小,同时降低了计算复杂度,从而更好地进行主从星的构型保持、预测和机动.
Nonlinear Elliptical Relative Dynamics Problem Based on Curvilinear Coordinates
In order to solve the problem that the existing analytical solutions for spacecraft relative motion are not accurate enough,the analytical solution of spacecraft nonlinear elliptical relative motion is calculated by modeling and analyzed in the curvilinear coordinate system for the first time.The Bessel function is used to solve the Kepler equation,by which the components of spacecraft relative motion in all directions are expressed in the Fourier form,and the constant term,long term,long period term,and short period term of the spacecraft relative motion state about time are separated.On this basis,a virtual spacecraft is introduced to calculate the analytical solution of the relative motion of the elliptical reference orbit.The error of the analytical solution of spacecraft relative motion is evaluated,and the main factors affecting the accuracy of the analytical solution are analyzed.It is verified that the analytical solution has less accuracy loss under the condition of large eccentricity and orbital inclination,reduces the computational complexity at the same time,and could better maintain,predict,and maneuver the configuration of master and slave satellites.

relative motioncurvilinear coordinateBessel function

赖东方、钱佳程、景前锋、梁玉莹

展开 >

南京航空航天大学 航天学院,江苏 南京 210016

上海宇航系统工程研究所,上海 201109

北京航空航天大学 宇航学院,北京 100083

相对运动 曲线坐标系 贝塞尔函数

2024

上海航天(中英文)
上海航天技术研究院

上海航天(中英文)

CSTPCD
影响因子:0.166
ISSN:2096-8655
年,卷(期):2024.41(6)