首页|基于小波分解的集卡港内周转时间预测

基于小波分解的集卡港内周转时间预测

Truck turnaround time prediction in a port based on wavelet decomposition

扫码查看
为准确预测集卡的港内周转时间,进而提升整个物流系统的作业效率,通过对集装箱码头闸口数据进行深入分析,得到3种不同任务类型的集卡港内周转时间序列,并在此基础上提出一种基于小波分解和自回归移动平均(autoregressive moving average,ARMA)模型的集卡港内周转时间预测方法.该方法首先利用小波分解技术对集卡港内周转时间序列的多维变化特征进行逐层分离,再利用ARMA模型对分离后的多个时间序列分别进行拟合,然后对拟合结果进行合并,以此近似模拟原序列的时变规律,继而实现集卡港内周转时间的短期预测.为验证该方法的有效性,将数据样本划分为训练集(75%)和测试集(25%),训练集用于拟合多维ARMA模型,测试集用于检验ARMA模型的预测结果误差.研究结果表明,对于3种任务类型,该模型均可以精确预测集卡的港内周转时间,为物流企业调整集卡运输计划提供相应的技术支持.

孙世超、董曜、李娜、郑勇

展开 >

大连海事大学交通运输工程学院,辽宁大连116026

水运管理 集卡周转时间预测 小波分解 自回归移动平均(ARMA)模型 码头闸口数据

71702019

2021

上海海事大学学报
上海海事大学

上海海事大学学报

CSTPCD北大核心
影响因子:0.578
ISSN:1672-9498
年,卷(期):2021.42(3)
  • 1
  • 9