首页|区域船舶交通流量预测ChebNet-LSTM模型

区域船舶交通流量预测ChebNet-LSTM模型

Regional ship traffic flow prediction model using ChebNet-LSTM

扫码查看
针对船舶交通流量预测模型对船舶流量数据空间特征考虑较少的问题,建立一种由切比雪夫网络(Chebyshev network,ChebNet)和长短期记忆网络(long short-term memory,LSTM)组成的深度学习预测模型ChebNet-LSTM.ChebNet的K阶卷积算子有利于提取船舶流量数据的空间特征,而LSTM用于学习船舶流量数据的时间特征.选取舟山水域中船舶流量不同的3个区域进行船舶流量预测实验.结果表明,所提出的ChebNet-LSTM模型可以有效地提取船舶流量数据的时空特征,在各项评价指标上的表现均优于对比模型,预测精度得到较大提高,可以为水上交通智能航行提供数据支撑.
Aiming at the problem that the spatial characteristics of ship traffic flow data are seldom considered in ship traffic flow prediction models,a deep learning prediction model is proposed.The model is composed of Chebyshev network(ChebNet)and the long short-term memory(LSTM),so it is called ChebNet-LSTM.ChebNet K-order convolution operator is helpful to extract the spatial characteristics of ship flow data,and LSTM is used to learn the temporal characteristics of ship flow data.The ship flow prediction experiment is carried out in three areas with different ship flow in Zhoushan waters.The results show that,the proposed ChebNet-LSTM model can effectively extract the temporal and spatial characteristics of ship flow data,its performance on various evaluation indices is better than that of the comparison model,the prediction accuracy is greatly improved,and it can provide data support for intelligent navigation of water traffic.

ship traffic flow predictionChebyshev network(ChebNet)long short-term memory(LSTM)intelligent navigation

陈信强、高原、赵建森、周亚民、梅骁峻、鲜江峰

展开 >

上海海事大学物流科学与工程研究院,上海 201306

上海海事大学商船学院,上海 201306

上海海事大学信息工程学院,上海 201306

船舶交通流量预测 切比雪夫网络(ChebNet) 长短期记忆网络(LSTM) 智能航行

国家自然科学基金国家自然科学基金国家自然科学基金福建省自然科学基金

5233101252102397621761502022J01131710

2024

上海海事大学学报
上海海事大学

上海海事大学学报

CSTPCD北大核心
影响因子:0.578
ISSN:1672-9498
年,卷(期):2024.45(1)
  • 21