首页|基于BP神经网络的上海生鲜农产品物流需求预测

基于BP神经网络的上海生鲜农产品物流需求预测

Logistics demand forecast of fresh agricultural products in Shanghai based on BP neural network

扫码查看
针对传统的生鲜农产品物流非线性需求预测模型收敛速度慢、精度低等问题,构建由改进粒子群(improved particle swarmi optimization,IPSO)算法优化反向传播(back propagation,BP)神经网络的预测模型.引入对立学习机制、自适应惯性权重、非对称学习因子提升粒子群(particle swarm optimization,PSO)算法的初始解质量,平衡算法的局部开发和全局搜索能力;利用IPSO算法优化BP神经网络的权值和阈值,解决BP神经网络收敛速度慢、容易陷入局部最优等问题.通过上海生鲜农产品物流需求预测实例对模型的有效性进行验证,结果显示:IPSO-BP神经网络模型在预测精度及收敛速度上均明显优于传统PSO-BP神经网络和BP神经网络模型.
Aiming at the problems of slow convergence speed and low precision of the traditional nonlinear demand forecast model for fresh agricultural product logistics,a forecast model that combines the improved particle swarm optimization(IPSO)algorithm with the back propagation(BP)neural network is proposed.The opposition learning mechanism,the adaptive inertia weight and the asymmetric learning factors are introduced to improve the quality of the initial solution of the particle swarm optimization(PSO)algorithm,and balance the capability of local development and global search of the algorithm;IPSO is used to optimize the weight and threshold of BP neural network to solve the problems of slow convergence speed and easy to fall into the local optimum.The effectiveness of the model is verified by an example of fresh agricultural product logistics demand forecast in Shanghai.The results show that the IPSO-BP neural network model is significantly better than the traditional PSO-BP neural network model and the BP neural network model in the prediction accuracy and the convergence speed.

cold chain logisticsdemand forecastimproved particle swarm optimization(IPSO)algorithmback propagation(BP)neural network

郝杨杨、邹宇

展开 >

上海海事大学物流科学与工程研究院,上海 201306

冷链物流 需求预测 改进粒子群(IPSO)算法 反向传播(BP)神经网络

上海市自然科学基金

22ZR1427700

2024

上海海事大学学报
上海海事大学

上海海事大学学报

CSTPCD北大核心
影响因子:0.578
ISSN:1672-9498
年,卷(期):2024.45(1)
  • 1
  • 15