首页|二手散货船多模型融合估值方法

二手散货船多模型融合估值方法

扫码查看
现阶段,二手船估值易受主观判断的影响,且存在估值时未全面考虑影响价格的因素等问题.为此,综合考虑船舶自身因素和市场因素,采集二手散货船在2000-2022年的交易数据进行实验,采用决策树、随机森林、XGBoost、LightGBM等4种机器学习算法分别建立二手散货船估值模型.为进一步提高估值的准确性,将后3种模型进行加权平均模型融合.结果显示:单个模型在测试集上的最高决定系数值为0.879,而融合模型的决定系数值为0.889.这表明所提出的融合模型能较为准确地对二手散货船进行估值.所提出的融合模型可以为航运等相关行业提供更准确、客观的二手散货船估值服务.
Multi-model fusion valuation method for second-hand bulk carriers
At present,the valuation of second-hand ships is susceptible to subjective judgment,and there is incomplete consideration of price-influencing factors in the valuation.To address these problems,the self-factors of ships and the market factors are considered comprehensively,transaction data of second-hand bulk carriers from 2000 to 2022 are collected for experiments,and four machine learning algorithms,decision tree,random forest,XGBoost,and LightGBM,are employed to construct valuation models for second-hand bulk carriers,respectively.To further enhance the valuation accuracy,the latter three models are fused as a weighted average model.The results demonstrate that,the highest coefficient value of determination for a single modle on the test set is 0.879,while the coefficient value of determination for the fusion model is 0.889.This indicates the proposed fusion model can accurately value second-hand bulk carriers.The proposed fusion model can provide more accurate and objective valuation services for second-hand bulk carriers in shipping and related industries.

ship valuationsecond-hand marketprice predictionmachine learningmodel fusion

何丹、胡勤友、李鹏昊、刘红太、许婉初

展开 >

上海海事大学商船学院,上海 201306

上海迈利船舶科技有限公司,上海 201306

船舶估值 二手市场 价格预测 机器学习 模型融合

2024

上海海事大学学报
上海海事大学

上海海事大学学报

CSTPCD北大核心
影响因子:0.578
ISSN:1672-9498
年,卷(期):2024.45(4)