石化技术2024,Vol.31Issue(1) :103-105.

基于NLP的油气非常规作业风险识别及管控措施推送

Risk identification and control measures push for unconventional oil and gas operations based on NLP technology

常江 郭桂娇 熊龙强 夏星 王磊 阎红巧
石化技术2024,Vol.31Issue(1) :103-105.

基于NLP的油气非常规作业风险识别及管控措施推送

Risk identification and control measures push for unconventional oil and gas operations based on NLP technology

常江 1郭桂娇 1熊龙强 1夏星 1王磊 1阎红巧2
扫码查看

作者信息

  • 1. 长庆油田分公司 陕西 西安 710021
  • 2. 中石油安全环保技术研究院 北京 102206
  • 折叠

摘要

本文介绍了一种基于自然语言处理(NLP)技术的油气非常规作业风险识别及管控措施推送方法.该方法通过构建非常规作业JSA知识库和风险智能识别模型,并集成于非常规作业许可管理系统中,实现了对油气非常规作业风险的高效自动识别和针对风险的管控措施精准推送,最终提高油气非常规作业风险管控水平.

Abstract

This article introduces a natural language processing(NLP)-based approach to identifying risks and promoting management and control measures for unconventional oil and gas operations.By building a JSA knowledge base and intelligent risk identification model for unconventional operations,and integrating it into the unconventional operation permit management system,this approach achieves efficient and automatic identification of risks and precise promotion of risk management and control measures,ultimately improving the level of risk management and control for unconventional oil and gas operations.

关键词

油气非常规作业/NLP技术/风险识别/管控措施推送/JSA库

Key words

Unconventional oil and gas operations/Nlp technology/Risk identification/Management and control measures push/JSA library

引用本文复制引用

出版年

2024
石化技术
中国石化集团资产经营管理有限公司北京燕山石化工分公司

石化技术

影响因子:0.261
ISSN:1006-0235
参考文献量3
段落导航相关论文