首页|基于LSTM的单井日产气量预测研究

基于LSTM的单井日产气量预测研究

Research on Daily Gas Production Prediction of Single Well Based on LSTM

扫码查看
产量预测是油气藏动态分析的重要内容之一,传统的BP神经网络与统计分析广泛应用于产量预测,但在预测过程中没有考虑数据在时间上的相关性.因此,提出利用长短期记忆网络(LSTM)深度学习模型进行产量预测.该方法在RNN的基础上增加了记忆功能,解决了长期依赖问题,能够通过寻找变量之间的非线性映射关系进行预测,是国内外深度学习研究中的一个热点.经实际数据检验,LSTM网络模型取得了较好的结果,可以作为一种新的方法用于油气藏产量预测.
Production forecasting is an essential aspect of dynamic analysis in oil and gas reservoirs.Traditional methods such as BP neural networks and statistical analysis are widely used for production forecasting;however,they often overlook the temporal correlations in the data during the prediction process.Therefore,this study proposes utilizing the Long Short-Term Memory(LSTM)deep learning model for production forecasting.Building upon the foundation of Recurrent Neural Networks(RNN),this method incorporates memory functionality,addressing the challenge of long-term dependencies.The model,which explores nonlinear mapping relationships between variables,has become a focal point in deep learning research both domestically and internationally.Through empirical data verification,the LSTM network model has shown promising results and can serve as a novel approach for predicting gas production in oil and gas reservoirs.

Deep learningBP neural networkLong Short-Term MemoryProduction forecasting

周鹏、李绍鹏、赵明芳

展开 >

贵州能源产业研究院有限公司 贵州 贵阳 550025

深度学习 BP神经网络 长短期记忆网络 产量预测

2024

石化技术
中国石化集团资产经营管理有限公司北京燕山石化工分公司

石化技术

影响因子:0.261
ISSN:1006-0235
年,卷(期):2024.31(5)