首页|基于LSTM的单井日产气量预测研究

基于LSTM的单井日产气量预测研究

扫码查看
产量预测是油气藏动态分析的重要内容之一,传统的BP神经网络与统计分析广泛应用于产量预测,但在预测过程中没有考虑数据在时间上的相关性。因此,提出利用长短期记忆网络(LSTM)深度学习模型进行产量预测。该方法在RNN的基础上增加了记忆功能,解决了长期依赖问题,能够通过寻找变量之间的非线性映射关系进行预测,是国内外深度学习研究中的一个热点。经实际数据检验,LSTM网络模型取得了较好的结果,可以作为一种新的方法用于油气藏产量预测。
Research on Daily Gas Production Prediction of Single Well Based on LSTM
Production forecasting is an essential aspect of dynamic analysis in oil and gas reservoirs.Traditional methods such as BP neural networks and statistical analysis are widely used for production forecasting;however,they often overlook the temporal correlations in the data during the prediction process.Therefore,this study proposes utilizing the Long Short-Term Memory(LSTM)deep learning model for production forecasting.Building upon the foundation of Recurrent Neural Networks(RNN),this method incorporates memory functionality,addressing the challenge of long-term dependencies.The model,which explores nonlinear mapping relationships between variables,has become a focal point in deep learning research both domestically and internationally.Through empirical data verification,the LSTM network model has shown promising results and can serve as a novel approach for predicting gas production in oil and gas reservoirs.

Deep learningBP neural networkLong Short-Term MemoryProduction forecasting

周鹏、李绍鹏、赵明芳

展开 >

贵州能源产业研究院有限公司 贵州 贵阳 550025

深度学习 BP神经网络 长短期记忆网络 产量预测

2024

石化技术
中国石化集团资产经营管理有限公司北京燕山石化工分公司

石化技术

影响因子:0.261
ISSN:1006-0235
年,卷(期):2024.31(5)