首页|深度学习技术在井区自然状况调查中的应用

深度学习技术在井区自然状况调查中的应用

扫码查看
随着地理信息系统(GIS)在各领域应用的深入,自动化的地理信息处理技术变得尤为重要.提出了一种结合深度学习技术与GIS的新型自动化井区自然状况调查方法.利用U形网络模型(U-Net)和分割任意物体模型(SAM)等先进的深度学习模型,实现了高分辨率正射影像中房屋、水系和道路等关键地理要素的高效识别和标注.实验结果显示,与传统手工标注方法相比,在识别准确率上达到95%~100%,大幅提升了标注效率并减少了时间成本.未来的研究方向包括提高模型在不同环境条件下的适应性,增强实时数据处理能力,以及改进用户交互体验.研究成果为GIS自动化处理技术在地理空间数据分析领域的应用提供了新思路,对推动相关技术的发展具有重要意义.
Application of deep learning in natural wndifions of well areas
With the increasing penetration of Geographic Information Systems(GIS)across various domains,automated geoinformation processing techniques Have become paramount.This paper presents a novel automated survey method for natural conditions in well areas,integrating deep learning technologies with GIS.By leveraging advanced deep learning models such as U-Net and the Segment Anything model(SAM),we efficiently recognize and annotate critical geographical features,including buildings,water bodies,and roads,from High-resolution orthophotos.Experimental results indicate that our approach achieves an accuracy rate ranging from 95%to 100%in comparison to traditional manual annotation methods,significantly enhancing annotation efficiency and reducing time costs.Future research directions encompass enhancing the model's adaptability under diverse environmental conditions,bolstering real-time data processing capabilities,and improving user interaction experiences.This research contributes novel insights into the application of GIS automation in geospatial data analysis,holding significant implications for advancing related technologies.

Geographic Information System(GIS)Deep LearningAutomated Annotationnatural condition Survey in Well AreasU-Net

黄冬、黎翔、杨棚程、任晟宏、龙曦

展开 >

四川科宏石油天然气工程有限公司 四川 成都 610000

地理信息系统 深度学习 自动化标注 井区自然状况调查 U形网络模型

2024

石化技术
中国石化集团资产经营管理有限公司北京燕山石化工分公司

石化技术

影响因子:0.261
ISSN:1006-0235
年,卷(期):2024.31(11)