首页|直动式机电运动装置的改进磁路-运动耦合模型及快速仿真

直动式机电运动装置的改进磁路-运动耦合模型及快速仿真

扫码查看
电磁阀、继电器等机电装置的动态性能快速仿真对研发设计非常重要。改进未磁饱和的直动式机电运动装置的磁路模型,并联合机构运动方程实现机电运动装置的快速仿真。与基于理想磁阻假设的常规磁路模型不同,改进磁路模型采用机构运动位移的3次多项式表示非饱和总磁阻,并通过上、下运动极限处静态磁力和电感仿真值标定多项式的4个待定系数,可更加准确地预测磁吸力和电感随运动位移变化。进一步联合改进的磁路方程与机构运动方程,得到改进的磁路-运动耦合模型,在Simulink系统中实现某电磁制动器和电磁阀的快速秒级仿真,可在保证计算精度的同时,大幅减少有限元仿真所需时间。
Improved Magnetic Circuit-Motion Coupled Model and Fast Simulation of Direct-Acting Electromechanical Motion Device
The rapid simulation of the dynamic performance of electromechanical devices such as solenoid valves and relays is important for product development and design.A magnetic circuit model of the non-saturated direct-acting electromechanical motion device is improved,and then coupled with the motion equation of the mechanism to realize the rapid simulation of the electromechanical motion device.In contrast to the ideal magnetic resistance in the conventional magnetic circuit model,the non-saturated total magnetic resistance is expressed by a cubic polynomial of the movement displacement of mechanism.The four undetermined coefficients of the polynomial are calibrated by the simulation values of static magnetic force and inductance at the upper and lower motion limits.The improved magnetic circuit model can more accurately predict the changes of magnetic attraction force and inductance with the motion displacement.Furthermore,coupled with the motion equation of the electromechanical motion device,the improved model establishes an improved magnetic circuit-motion coupled model and realizes fast second-level simulation of an electromagnetic brake and valve in the Simulink system,which can greatly reduce the finite element simulation time while maintaining simulation accuracy.

electromechanical devicemagnetic circuit modelmagnetic adsorptionfast simulationair gap

江鹏、关振群、赵国忠、张群、秦志强

展开 >

大连理工大学工程力学系,辽宁大连 116024

英特工程仿真技术(大连)有限公司,辽宁大连 116023

大连工业大学艺术与信息工程学院,辽宁大连 116400

机电装置 磁路模型 磁吸附 快速仿真 气隙

国家重大科技专项国家重点研发计划

2011ZX02403-004-22017YFB0203601

2024

上海交通大学学报
上海交通大学

上海交通大学学报

CSTPCD北大核心
影响因子:0.555
ISSN:1008-7095
年,卷(期):2024.58(1)
  • 7