上海交通大学学报2024,Vol.58Issue(3) :295-303.DOI:10.16183/j.cnki.jsjtu.2022.091

基于门控循环注意力网络的配电网故障识别方法

Fault Detection in Power Distribution Systems Based on Gated Recurrent Attention Network

陈昊蓝 靳冰莹 刘亚东 钱庆林 王鹏 陈艳霞 于希娟 严英杰
上海交通大学学报2024,Vol.58Issue(3) :295-303.DOI:10.16183/j.cnki.jsjtu.2022.091

基于门控循环注意力网络的配电网故障识别方法

Fault Detection in Power Distribution Systems Based on Gated Recurrent Attention Network

陈昊蓝 1靳冰莹 1刘亚东 1钱庆林 2王鹏 3陈艳霞 3于希娟 3严英杰1
扫码查看

作者信息

  • 1. 上海交通大学电子信息与电气工程学院,上海 200240
  • 2. 国网青海省电力公司,西宁 810008
  • 3. 国网北京市电力公司,北京 100031
  • 折叠

摘要

为了提高小样本条件下配电网故障辨识准确率,提出一种门控循环注意力网络模型.首先,通过注意力机制赋予故障相中关键周期较高权重,通过加权运算使得模型更加关注上述关键信息.其次,利用门控循环网络处理波形序列,该网络利用门控信号控制记忆传递过程,并借由记忆传递建立序列中不同阶段输入波形和故障类别概率间的关系,从而提升识别准确率.基于仿真数据和实际数据的实验均表明:所提方法在小样本条件下的可靠性和准确率远优于同等条件下支持向量机、梯度提升决策树、卷积神经网络等常用分类模型,为配电网故障辨识技术提供了 一种新思路.

Abstract

To improve fault identification accuracy in power distribution systems,a model named gated recurrent attention network is proposed.First,a higher weight is put on the key cycles of fault phase based on the attention mechanism,making the model focus more on these key messages by weight assignment.Then,the gated recurrent network is adopted,which controls the memory transmission with gate signal and constructs the relationship between input waveform and probability of events at different stages to process the waveform sequence,thereby improving recognition accuracy.Experiments based on both simulation and field data show that the proposed method,under the small-sample-learning condition,is much better than other commonly-used classification models,such as support vector machine,gradient boosting decision tree,and convolutional neural network,providing new insights into fault identification technology in power distribution systems.

关键词

配电网/故障辨识/注意力机制/门控循环网络

Key words

power distribution systems/faults identification/attention mechanism/gated recurrent units(GRU)

引用本文复制引用

基金项目

国家电网科技项目(52020121000C)

出版年

2024
上海交通大学学报
上海交通大学

上海交通大学学报

CSTPCD北大核心
影响因子:0.555
ISSN:1008-7095
参考文献量27
段落导航相关论文