首页|基于门控循环注意力网络的配电网故障识别方法

基于门控循环注意力网络的配电网故障识别方法

扫码查看
为了提高小样本条件下配电网故障辨识准确率,提出一种门控循环注意力网络模型。首先,通过注意力机制赋予故障相中关键周期较高权重,通过加权运算使得模型更加关注上述关键信息。其次,利用门控循环网络处理波形序列,该网络利用门控信号控制记忆传递过程,并借由记忆传递建立序列中不同阶段输入波形和故障类别概率间的关系,从而提升识别准确率。基于仿真数据和实际数据的实验均表明:所提方法在小样本条件下的可靠性和准确率远优于同等条件下支持向量机、梯度提升决策树、卷积神经网络等常用分类模型,为配电网故障辨识技术提供了 一种新思路。
Fault Detection in Power Distribution Systems Based on Gated Recurrent Attention Network
To improve fault identification accuracy in power distribution systems,a model named gated recurrent attention network is proposed.First,a higher weight is put on the key cycles of fault phase based on the attention mechanism,making the model focus more on these key messages by weight assignment.Then,the gated recurrent network is adopted,which controls the memory transmission with gate signal and constructs the relationship between input waveform and probability of events at different stages to process the waveform sequence,thereby improving recognition accuracy.Experiments based on both simulation and field data show that the proposed method,under the small-sample-learning condition,is much better than other commonly-used classification models,such as support vector machine,gradient boosting decision tree,and convolutional neural network,providing new insights into fault identification technology in power distribution systems.

power distribution systemsfaults identificationattention mechanismgated recurrent units(GRU)

陈昊蓝、靳冰莹、刘亚东、钱庆林、王鹏、陈艳霞、于希娟、严英杰

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

国网青海省电力公司,西宁 810008

国网北京市电力公司,北京 100031

配电网 故障辨识 注意力机制 门控循环网络

国家电网科技项目

52020121000C

2024

上海交通大学学报
上海交通大学

上海交通大学学报

CSTPCD北大核心
影响因子:0.555
ISSN:1008-7095
年,卷(期):2024.58(3)
  • 27