首页|基于量子蚁群算法的配电网故障区段快速定位技术

基于量子蚁群算法的配电网故障区段快速定位技术

扫码查看
分布式电源并入配电网已成为新型电力系统重要特征之一,分布式电源的接入与发电的不确定性使配电网潮流复杂多变,对配电网故障快速定位提出更高的技术要求。然而,现有智能优化算法在解决配电网故障区段定位问题时会出现收敛速度慢、易陷入局部最优等问题。针对这些挑战与问题,提出一种基于量子蚁群算法(QACA)的配电网故障区段快速定位技术。首先,根据状态逼近思想和最小故障集理论构建配电网故障定位的数学模型;其次,针对馈线终端单元上传信息缺失情况提出信息自修正方法,并提出分级定位模型来缩短定位时间;然后,提出3种改进技术对QACA进行针对性改进,改进量子旋转门更新机制,以函数控制形式动态调整旋转角大小,同时引入精英策略加快算法收敛速度。最后,在关键参数确定后验证了改进技术、信息自修正法、分级定位模型的有效性。将所提算法与7种不同算法进行对比,结果表明:改进的QACA可有效完成故障区段定位,具有良好的收敛速度、准确率以及容错性能。
Fast Fault Location Technology for Distribution Network Based on Quantum Ant Colony Algorithm
Integration of distributed generations into distribution networks has become one of the important features of new power systems.The integration of distributed generation and the uncertainty of power generation make the power flow in distribution networks complex and variable,which poses higher technical requirements for rapid fault location in distribution networks.However,existing intelligent optimization algorithms may encounter problems such as slow convergence speed and susceptibility to local optimization when solving the problem of fault section location in distribution networks.To address these challenges and problems,a rapid fault section location technology based on quantum ant colony algorithm(QACA)is proposed.First,a location mathematical model is constructed based on the state approximation idea and the minimum fault set theory.Then,an information self-correction method is proposed for the missing information uploaded by feeder terminal unit,and a hierarchical location model is proposed to shorten the location time.Afterwards,three improvement techniques are proposed to improve the QACA.The update mechanism of the quantum rotary gate is improved,the rotation angle is dynamically adjusted in the form of function control,and the elite strategy is introduced to accelerate the convergence speed of the algorithm.Finally,after the key parameters are determined,the effectiveness of the improved technique,the information self-correction method,and the hierarchical positioning model is verified.A comparison with 7 different algorithms indicates that the improved QACA can effectively locate the fault section,and has a fast convergence speed,great accuracy,and fault tolerance.

location of fault section in distribution networkquantum ant colony algorithm(QACA)information self-correction methodhierarchical location model network

毕忠勤、余晓婉、王宝楠、黄文焘、张丹、董真

展开 >

上海电力大学计算机科学与技术学院,上海 201306

上海交通大学电力传输与功率变换控制教育部重点实验室,上海 200240

上海海事大学物流科学与工程研究院,上海 201306

国网上海市电力公司电力科学研究院,上海 200437

展开 >

配电网故障区段定位 量子蚁群算法 信息自修正法 分级定位模型

电力传输与功率变换控制教育部重点实验室开放基金

2022AA02

2024

上海交通大学学报
上海交通大学

上海交通大学学报

CSTPCD北大核心
影响因子:0.555
ISSN:1008-7095
年,卷(期):2024.58(5)
  • 31