首页|三角形结合方案的最优局部修复码构造

三角形结合方案的最优局部修复码构造

扫码查看
局部修复码(LRCs)为用于分布式存储系统中的新型纠删码,能够有效实现海量数据的可靠高效存储,构造具有(r,t)局部性的LRCs已成为当前研究热点。为此,提出基于三角形结合方案的LRCs构造方法,可构造具有任意(r,t)局部性的二元最优LRCs。性能分析结果表明,构造的可用性t=2的LRCs达到了最优码率界,构造的具有任意局部性r>2和可用性t>2的LRCs达到了最优最小距离界。与基于近正则图及基于直积码等构造方法相比,本文构造出的LRCs在码率上表现更优且参数选择更灵活。
Construction of Optimal Locally Repairable Codes of Triangular Association Schemes
As a new erasure code for distributed storage systems,locally repairable codes(LRCs)can effectively realize the reliable and efficient storage of massive data.The construction of locally repairable codes with(r,t)locality has become a research hotspot recently.Therefore,the construction methods of locally repairable codes based on triangular association schemes are proposed,which can construct optimal binary locally repairable codes with arbitrary(r,t)locality.Performance analyses show that the LRCs constructed with availability t=2 reach the optimal code rate bound,the LRCs constructed with arbitrary locality r>2 and availability t>2 reach the optimal minimum distance bound.The LRC constructed in this paper performs better in terms of code rate and more flexible parameter selection than those constructed based on near-regular graphs and direct product codes,etc.

distributed storage systemlocally repairable code(LRC)triangular association schemesminimum distance

王静、李静辉、杨佳蓉、王娥

展开 >

长安大学信息工程学院,西安 710018

分布式存储系统 局部修复码 三角形结合方案 最小距离

国家自然科学基金陕西省自然科学基金资助项目长安大学大学生创新创业训练计划项目

620010592022JM-056S202310710121

2024

上海交通大学学报
上海交通大学

上海交通大学学报

CSTPCD北大核心
影响因子:0.555
ISSN:1008-7095
年,卷(期):2024.58(10)