首页|空间解析单细胞转录组的优化算法研究

空间解析单细胞转录组的优化算法研究

扫码查看
由于单细胞和空间转录组技术都存在一定的不足,整合单细胞转录组和空间转录组技术应运而生.为提高单细胞矩阵到空间矩阵映射的相似度,降低损失函数值,通过改进深度学习Tangram算法的目标函数,同时受龙格库塔方法的启发对优化算法Adam的梯度值进行修正,开发了RK-Tangram算法.将其应用到 3组模拟数据与真实的小鼠大脑皮质、运动和视觉区域的数据上,与原始Tangram算法相比,结果表明,RK-Tangram算法不仅提高了映射的相似度,降低了损失函数值,而且扩展了空间转录组的全基因组图谱,并纠正了低质量的空间测量.另外,通过解卷积将空间转录组数据转化为单细胞数据,提供了一个更高分辨率的组织类型图谱.
Research on the optimization algorithm for spatially resolved single-cell transcriptomes
As both single-cell and spatial transcriptome techniques have certain shortcomings,techniques integrating single-cell transcriptome and spatial transcriptome were developed.In order to improve the similarity of mapping single-cell matrix to spatial matrix and reduce the loss function value,the RK-Tangram algorithm was developed by improving the objective function of the Tangram algorithm for deep learning and also correcting the gradient value of the optimization algorithm Adam,inspired by the Runge-Kutta method.Applying it to three sets of simulated data and real data from mouse brain cortical,motor and visual regions,compared with the original Tangram algorithm,the results showed that the RK-Tangram algorithm not only improved the similarity of the mapping and reduced the loss function value,but also extended the genome-wide mapping of the spatial transcriptome and corrected spatial measurements with low-quality.In addition,deconvoluting the spatial transcriptome's data to single cell's provided a higher resolution mapping of tissue types.

deep learninggradient descentdeconvolutiontranscriptome

皇站飞、赵桂华

展开 >

上海理工大学理学院,上海 200093

深度学习 梯度下降 解卷积 转录组

2024

上海理工大学学报
上海理工大学

上海理工大学学报

北大核心
影响因子:0.767
ISSN:1007-6735
年,卷(期):2024.46(6)