首页|基于子图采样的大规模图对抗性攻击方法

基于子图采样的大规模图对抗性攻击方法

扫码查看
为提高对抗性攻击在大规模图上的攻击效率,提出了基于子图采样的对抗样本生成方法.该方法通过引入PageRank、余弦相似度及K跳子图等技术,提取与目标节点高度相关的子图,在大规模图上缓解了计算梯度效率较低的问题,在降低被攻击模型准确性的同时提升了攻击的隐蔽性.实验结果表明:所提出的对抗性攻击方法与基于梯度攻击的GradArgmax算法相比,在Cora数据集上提升了 30.7%的攻击性能,且在Reddit大规模数据上能够计算GradArgmax算法无法计算的攻击扰动.
Subgraph sampling-based adversarial attack method for large-scale graphs
A subgraph sampling-based adversarial example generation method was proposed to enhance the efficiency of adversarial attacks on large-scale graphs.PageRank,cosine similarity,and K-hop subgraphs were employed to extract subgraphs highly relevant to the target node in this method,alleviating the issue of low gradient computation efficiency in large-scale graphs.The stealthiness of the attack was also increased while reducing the accuracy of the attacked model.Experimental results showed that attack performance was improved by 30.7%on the Cora dataset by this adversarial attack method compared to the GradArgmax algorithm,and attack perturbations on large-scale like Reddit dataset could be computed which the GradArgmax algorithm could not achieve.

graph neural networkadversarial attacksubgraph extraction algorithm

高昕、安冬冬、章晓峰

展开 >

上海师范大学 信息与机电工程学院,上海 201418

上海新致软件股份有限公司,上海 200120

图神经网络 对抗性攻击 子图提取算法

国家自然科学基金青年基金上海市青年科技英才扬帆计划

6230230821YF1432900

2024

上海师范大学学报(自然科学版)
上海师范大学

上海师范大学学报(自然科学版)

影响因子:0.255
ISSN:1000-5137
年,卷(期):2024.53(2)
  • 11