首页|基于深度学习的马拉松号码簿识别方法研究

基于深度学习的马拉松号码簿识别方法研究

扫码查看
在异常行为运动员身份识别任务中,通过号码牌区域定位和号码文本识别两部分完成对号码牌的识别任务。针对号码牌倾斜扭曲、长宽比值变化较小等问题,结合聚类方法设计一种基于旋转目标检测模型rRetinaNet来匹配多种形式的号码牌。采用结合注意力机制的基于CRNN的文本识别算法对号码文本进行识别,提升对不规则号码文本的识别性能。通过文本合成算法生成近似号码文本的图像用于网络的预训练,真实号码牌图像则用于预训练模型的微调。实验结果表明,在自主创建的真实赛事马拉松数据集上,改进后的复合型网络在号码簿的检测与识别精度上均有所提升,通过这两个算法的结合可以有效地解决异常行为运动员身份识别问题。
Research on Marathon Directory Recognition Method Based on Deep Learning
In the identification task of athletes with abnormal behaviors,the identification method based on number plate is adopted to complete the identification task of number plate through two parts:regional location of number plate and number text recognition.Aiming at problems such as tilt distortion and small changes in length-to-width ratio,a clustering method is combined with rRetinaNet based on rotating target detection model to match multiple forms of number tags,so as to improve the detection accuracy of targets.In the stage of number text recognition,the text image is obtained by clipping the corner coordinates,and the text recognition algorithm based on CRNN combined with attention mechanism is used to recognize the number text,so as to improve the recognition performance of irregular number text.Through text synthesis algorithm,the image of approximate number text is generated for network pre-training,and the real number plate image is used for fine tuning of the pre-training model.The experimental results show that,on the self-created real marathon data set,the improved compound network has improved the detection and recognition accuracy of the number book,and the combination of these two algorithms can effectively solve the problem of the identification of athletes with abnormal behavior.

directory recognitionRetinaNetrotating target detectioncircular smooth labelCRNN

申静波、宋思宇、豁双、李井辉

展开 >

东北石油大学计算机与信息技术学院 黑龙江大庆 163318

号码簿识别 RetinaNet 旋转目标检测 环形平滑标签 CRNN

国家自然科学基金国家自然科学基金

5227400552174001

2024

绥化学院学报
绥化学院

绥化学院学报

影响因子:0.195
ISSN:2095-0438
年,卷(期):2024.44(2)
  • 16