首页|机车牵引齿轮系统混沌运动的径向基函数神经网络控制

机车牵引齿轮系统混沌运动的径向基函数神经网络控制

扫码查看
针对HXD2牵引齿轮系统运行性能监控需求,建立了单自由度牵引齿轮系统动力学模型并结合分岔图、相图和Poincaré截面图分别分析了阻尼系数、啮合刚度的变化对系统周期性响应的影响.基于径向基函数神经网络设计了混沌控制器,同时控制器的参数用量子粒子群算法进行优化,并通过对阻尼系数施加微幅扰动,将系统混沌运动控制为稳定的周期运动.
Radial basis function neural network control of chaotic motion of locomotive traction gear system
According to the operation performance monitoring requirements of HXD2 traction gear system,the dynamic model of the single degree traction gear system is established and by combining the bifurcation diagram,phase diagram,and Poincaré cross section diagram,it is able to examine how the damping coefficient and the change in engagement stiffness affect the system's periodic response.Using a radial basis function neural network(RBFNN),we created a parameter feedback controller.The quantum particle swarm algorithm(QPSO)is used to optimize the controller's parameters.By applying a microamplitude perturbation to the damping coefficient,The system chaotic motion is controlled as a stable periodic motion.

locomotive traction gearradial basis function neural network(RBFNN)quantum particle swarm algorithm(QPSO)chaos control

卫晓娟、陶幸、李静、李宁洲、何正义、周方伟

展开 >

上海应用技术大学轨道交通学院,上海 201418

机车牵引齿轮 径向基函数神经网络 量子粒子群算法 混沌控制

国家自然科学基金项目国家自然科学基金项目甘肃省青年科技基金计划上海应用技术大学协同创新基金项目上海应用技术大学引进人才科研启动项目上海应用技术大学引进人才科研启动项目

516650271196201321JR7RA328XTCX2023-20YJ2021-18YJ2021-19

2024

应用技术学报
上海应用技术学院

应用技术学报

影响因子:0.195
ISSN:2096-3424
年,卷(期):2024.24(2)
  • 11