首页|基于改进DeepLabv3+的轻量化作物杂草识别方法

基于改进DeepLabv3+的轻量化作物杂草识别方法

扫码查看
为在存储资源与计算能力有限的设备上实现田间作物和杂草的识别,本文提出一种基于改进 DeepLabv3+的轻量化语义分割网络.首先,以 MobileNet v2 作为 DeepLabv3+的特征提取骨干网络,提出双分支残差模块替换倒残差模块,并删除后两层卷积以降低模型参数量.其次,在空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块中引入分组逐点卷积,使用深度扩张卷积替换标准卷积,并将卷积后的特征图进行多尺度特征融合增强对作物和杂草深层特征的提取能力.最后,将原有的非线性激活函数替换为 Leaky ReLU 激活函数来提升分割精度.实验结果表明:改进后网络的 mIOU达到 86.75%,参数量仅为 0.69M,FPS达到了 98,与原始 DeepLabv3+以及 3 个典型轻量化语义分割网络的相比,参数量最小,在对比的轻量化网络中具有最高的分割精度.
Lightweight crop and weed recognition method based on imporved DeepLabv3+
To achieve field crop and weed recognition on devices with limited storage resources and computational capabilities,a light-weight semantic segmentation network based on improved DeepLabv3+ is proposed.Firstly,MobileNet v2 is used as the feature extrac-tion backbone for DeepLabv3+,where the residual modules are replaced with dual-branch residual modules and the last two convolu-tional layers are removed to reduce the model parameters.Secondly,group-wise pointwise convolution is introduced in the Atrous Spa-tial Pyramid Pooling module,replacing standard convolutions with depthwise dilated convolutions,and performing multi-scale feature fusion on the convolved feature maps to enhance the extraction of deep features for crops and weeds.Lastly,the original non-linear ac-tivation functions are replaced with the Leaky ReLU activation function to improve segmentation accuracy.Experimental results show that the improved DeepLabv3+ achieves an mIOU(Mean Intersection over Union)of 86.75%with only 0.69M parameters,and a-chieves an FPS(Frames Per Second)of 98.Compared to the original DeepLabv3+ and three typical lightweight semantic segmentation networks,it has the lowest parameter count and the highest segmentation accuracy among the compared lightweight networks.

crop and weed identificationlightweightsemantic segmentationDeeplabv3+MobileNet v2multi-scale feature fusion

曲福恒、李金状、杨勇、康镇南、严兴旺

展开 >

长春理工大学计算机科学技术学院, 吉林 长春 130022

长春师范大学教育学院,吉林 长春 130032

作物和杂草识别 轻量化 语义分割 DeepLabv3+ MobileNet v2 多尺度特征融合

吉林省教育厅科学技术研究项目

JJKH20220777KJ

2024

石河子大学学报(自然科学版)
石河子大学

石河子大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.662
ISSN:1007-7383
年,卷(期):2024.42(1)
  • 24