首页|基于CHEBWO的多目标棉田图像增强算法

基于CHEBWO的多目标棉田图像增强算法

扫码查看
为了增强棉田图像的垄线特征、纹理清晰度以及棉田与垄线之间的对比度,以提高农机视觉导航图像的分割准确率与泛化能力,本文提出了一种多目标图像增强算法——混沌混合精英白鲸优化算法(Chaotic hybrid elite be-luga whale optimization,CHEBWO).该算法在AMSRCR算法和直方图均衡化的基础上设计了新的图像加权融合模型,并针对图像评价,设计了一种新的多目标加权评价函数.实验结果表明,与基于 Retinex 图像增强算法(如SSR、MSR、MSRCR、MSRCP)以及基于直方图均衡化增强算法(如 HE、AHE、CLAHE)进行对比,CHEBWO 算法在PSNR、AG、SD、IE、SSIM 等指标上平均提高了 6.18、42.38、40.41、0.89 和 0.22.因此,本文提出的棉田图像增强算法在增强棉田图像对比度、清晰度以及保持垄线纹理方面具有显著优势,有助于提高语义分割模型的性能和准确性.
A multi-objective cotton field image enhancement algorithm based on CHEBWO
In order to enhance the texture clarity of cotton field image ridge features and the contrast between cotton fields and ridge lines,a multi-objective image enhancement algorithm,Chaotic hybrid elite beluga whale optimization(CHEBWO),is proposed,which significantly improves the segmentation accuracy and generalization ability of agricultural machinery visual navigation images.This algorithm is based on Retinex's Auto-MSRCR algorithm and histogram equalization,and a new image weighted fusion model is de-signed.In terms of image evaluation,a new multi-objective weighted evaluation function is designed.The experimental results show that CHEBWO is compared with Retinex based image enhancement algorithms such as SSR,MSR,MSRCR,MSRCP,and histogram equalization based enhancement algorithms such as HE,AHE,and CLAHE.The proposed method has an average improvement of 6.18,42.38,40.41,0.89,and 0.22 in PSNR,AG,SD,IE,SSIM and other indicators.The cotton field image enhancement algo-rithm CHEBWO proposed in this article has outstanding advantages in contrast,clarity,and maintaining ridge texture.

Beluga whale optimizationRetinexhistogram equalizationimage enhancementmulti objective optimization

王封疆、王梦飞、周杰

展开 >

石河子大学信息科学与技术学院,新疆 石河子 832003

白鲸优化算法 Retinex 直方图均衡化 图像增强 多目标优化

国家自然科学基金项目

61662063

2024

石河子大学学报(自然科学版)
石河子大学

石河子大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.662
ISSN:1007-7383
年,卷(期):2024.42(4)
  • 9