首页|鲁棒多视角潜在低秩表示的图像分类方法

鲁棒多视角潜在低秩表示的图像分类方法

扫码查看
随着 5G和网络技术的飞速发展,大量互联网图像出现在人们的视野中.互联网图像的高维和噪声特性是图像分类问题的主要挑战.为提高互联网图像的识别性和鲁棒性,本文提出了一种鲁棒多视角潜在低秩表示(robust multi-view latent low rank representation,RMLLRR)的图像分类方法.RMLLRR算法在低秩表示算法的框架上引入多视角学习的思想,根据视角互补性和一致性准则,利用多种特征得到图像全面的描述信息,最大化不同视角间的一致性和最小化视角间信息描述的分歧.RMLLRR算法使用潜在低秩表示的思想,过滤冗余特征和噪声信息,着重考虑图像主要特征信息和显著特征信息,使得模型更加鲁棒和分辨力.此外,RMLLRR 算法运用 ε-draggings技术学习类间大间隔的松弛标签矩阵,起到增强类别判别的作用.人脸数据集 ORL、物体数据集 COIL和对象识别数据集 GRAZ的实验结果表明,在噪声环境下,RMLLRR算法在所有对比算法中取得了最好的分类结果,分类精度分别达到 92.43%、98.95%和 63.37%.
Robust multi-view latent low rank representation algorithm for image classification
With the rapid development of 5G and network technology,a large number of internet images have appeared in people′s vi-sion.The high-dimension and noise characteristics of Internet images are the main challenges in classification problems.In order to im-prove the recognition and robustness of Internet images,this study proposes a robust multi-view latent low rank representation(RMLL-RR)algorithm for image classification.The RMLLRR algorithm incorporates the idea of multi-view learning within the framework of low rank representation algorithm.Based on the complementary and consistent criteria of multiple views,it utilizes multiple features to ob-tain comprehensive image description information,maximizing consistency between different views and minimizing divergence in infor-mation description between views.The RMLLRR algorithm uses the idea of latent low rank representation,filters redundant features and noise information,and focuses on the principal feature and salient feature of the image,making the model more robust and discrim-inative.In addition,the RMLLRR algorithm utilizes the ε-draggings technique to learn the relaxed label matrix with large intervals be-tween classes,which enhances the discrimination ability of classes.The experimental results of the face dataset ORL,object dataset COIL,and object recognition dataset GRAZ show that in noisy environments,the RMLLRR algorithm achieves the best classification results among all compared algorithms,with classification accuracy of 92.43%,98.95%,and 63.37%,respectively.

multi-view learninglatent low-rank representationε-draggings technologyimage classification

申燕萍、韩少勇、顾苏杭、郇战

展开 >

常州工业职业技术学院信息工程学院,江苏 常州 213164

常州大学计算机与人工智能学院,江苏 常州 213164

郑州银行博士后科研工作站,河南 郑州 450015

常熟理工学院电气与自动化工程学院,江苏 常熟 215500

展开 >

多视角学习 潜在低秩表示 ε-draggings技术 图像分类

江苏省高职院校教师专业带头人高端研修项目

2023GRFX004

2024

石河子大学学报(自然科学版)
石河子大学

石河子大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.662
ISSN:1007-7383
年,卷(期):2024.42(5)