首页|基于YOLO-SW与时序特征的奶牛行为识别算法研究

基于YOLO-SW与时序特征的奶牛行为识别算法研究

扫码查看
奶牛的姿态行为与其健康状态密切相关,针对传统人工监测方法存在效率低、漏查率高的问题,提出一种改进YOLOv8的奶牛姿态估计模型YOLO-SW(YOLOv8-Swin Transformer WIoU),并结合时序统计方法实现奶牛行为的自动识别.首先,YOLO-SW模型在Backbone主干网络部分融入Swin Transformer模块提取特征,运用其下采样层级设计的移位窗口机制,逐渐增大感受野,显著提升模型对奶牛全局特征信息的提取能力;其次,针对模型原始损失函数收敛率较低的问题,使用边界框回归损失函数Wise-IoU替换CIoU,利用离群度替代IoU对锚框进行质量评估,提出了更合适的梯度增益分配策略,从而更有效地提高模型的收敛速度和识别性能.实验结果显示:YOLO-SW 模型的mAP50指标达到97.7%,mAP50:90指标达到83.8%;在视频行为识别中,按时序将奶牛行为视频帧输入模型,再采用均值滤波统计算法,结果显示:YOLOv8平均精度值为86.84%,YOLO-SW平均精度达到90.74%.表明YOLO-SW模型在奶牛行为识别分析的精准度方面具有优势,可为奶牛疾病预防及健康监测提供技术支持,在行为识别领域有广泛的应用前景.
Research on cow behavior recognition algorithm based on YOLO-SW and temporal features
The postural behavior of cows is closely related to their health status,and for the problems of inefficiency and high leakage rate of traditional manual monitoring methods,this paper proposes a cow posture estimation model YOLO-SW(YOLOv8-Swin Transformer WIoU)with improved YOLOv8 and combines it with time-series statistical methods to realize the automatic identification of cow behavior.First,the YOLO-SW model incorporates the Swin Transformer module in the Backbone backbone network part to extract features,and utilizes its downsampling hierarchical design of the shift window mechanism to gradually increase the sensory field,which significantly improves the model's ability of extracting the global feature information of the cows;second,in response to the problem of the model's original loss function having a low convergence rate,the bounding box regression loss function WIoU to replace CIoU,and use outlier to replace IoU to assess the quality of the anchor frame,which provides a suitable gradient gain allocation strategy and effectively improves the model's convergence speed and recognition performance.The experimental results show that the mAP50 index of the YOLO-SW model reaches 97.7%,and the mAP50:90 index reaches 83.8%.In video behavior recognition,the video frames of cow behavior were input into the model in chronological order,and the mean filtering statistical algorithm was used,which showed that the average accuracy value of YOLOv8 was 86.84%,and the average accuracy of YOLO-SW reached 90.74%.This study shows that the model has advantages in the accuracy of dairy cow behavior recognition analysis,provides technical support for disease prevention and health monitoring of dairy cows,and has a wide range of application prospects in the field of behavior recognition.

YOLOv8cow behavior recognitionfeature extractionSwin TransformerWIoU

邓红涛、张帅龙、高峰、翟玉洁、张舟、吴妍妍、张文举

展开 >

石河子大学机械电气工程学院,新疆石河子 832003

石河子大学师范学院,新疆石河子 832003

石河子市北泉镇天潞庄养牛专业合作社,新疆石河子 832003

石河子大学动物科技学院,新疆石河子 832003

展开 >

YOLOv8 奶牛行为识别 特征提取 Swin Transformer WIoU

2024

石河子大学学报(自然科学版)
石河子大学

石河子大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.662
ISSN:1007-7383
年,卷(期):2024.42(6)