首页|基于关注度感知的多关系异构图嵌入方法

基于关注度感知的多关系异构图嵌入方法

扫码查看
异构图嵌入旨在学习图中每个不同类型节点的一个低维向量表示,该向量能广泛应用于不同的网络分析任务,如节点分类、链路预测等.现有方法在处理异构图嵌入时存在丢失一些关键的、细粒度的关系信息以及对高阶邻居节点的处理不够精细等问题.针对这些问题,文中提出了一种关注度感知多关系异构图嵌入方法,具体而言,该方法通过添加带衰减的高阶共同邻居相似度矩阵到异构图神经网络来指导节点聚合,并学习节点间的重要性,该矩阵利用一个衰减指数来保证离当前节点跳数越近,对当前节点贡献越大.通过这种方式,该模型能有效地捕捉节点间关系.相比现存的图自适应关注度模型,该模型有更直观的可解释性.大量的实验证明文中所提模型优于现存的先进的基础模型.
Attention-aware Multi-relational heterogeneous graph embedding
Heterogeneous graph embedding aims to learn a low-dimensional vector representation for each node of different types in the graph.This representation can be widely applied in various network analysis tasks such as node classification,link prediction,etc.Ex-isting methods often face challenges such as losing some key,fine-grained relational information and insufficiently handling high-order neighbor nodes when processing heterogeneous graph embeddings.To address these issues,this paper proposes an Attention-aware Multi-relational heterogeneous graph embedding method.Specifically,the method guides node aggregation by adding a decay-based high-order co-neighbor similarity matrix to the heterogeneous graph neural network and learns the importance between nodes.This ma-trix uses a decay exponent to ensure that the closer the node is to the current node in terms of hops,the greater its contribution to the current node.In this way,the model can effectively learn the importance relationships between nodes in the graph and capture inter-node relationships.Compared to existing graph adaptive attention models,this model offers more intuitive interpretability.Extensive experiments demonstrate that the proposed model outperforms the state-of-the-art baseline models.

Attention-awarenessgraph neural networkheterogeneous graph embeddingsimilarity matrix

张佳喆、莫先

展开 >

宁夏大学信息工程学院,宁夏银川 750021

关注度感知 图神经网络 异构图嵌入 相似度矩阵

2024

石河子大学学报(自然科学版)
石河子大学

石河子大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.662
ISSN:1007-7383
年,卷(期):2024.42(6)