首页|基于轻量化YOLOv8的疵棉异性纤维检测算法研究

基于轻量化YOLOv8的疵棉异性纤维检测算法研究

扫码查看
为解决疵棉小目标异纤检测难度高、检测实时性差等问题,本文提出一种基于轻量化YOLOv8的疵棉异纤检测算法(YOLOv8-MMW).首先,引入MobileNetV3轻量级网络替换原骨干网络,以降低参数数量和计算复杂度,提高网络算法检测的实时性;其次,在骨干网络中加入多维协作注意力机制(MCA),增强多维特征交互能力,使模型关注疵棉小目标异纤;最后,引入动态非单调聚焦机制WIoUv3,以提高模型收敛速度和精度,提升对小目标异纤的定位能力.结果表明,改进后的YOLOv8-MMW模型精确度和平均精度均值分别为95.5%和95.8%,与原始基线模型YOLOv8相比,精确度和平均精度均值分别提升了 0.9%和0.1%,模型权重减少了 56.7%,帧率达到367.8帧/s.改进后的模型可以更快速、准确地识别出疵棉小目标异纤,为疵棉智能化分拣提供技术支撑.
Research on defective cotton foreign fiber detection algorithm based on lightweight YOLOv8
To solve the problems of high difficulty and poor real-time detection of small target heterofiber in defective cotton,this paper proposes a defect detection algorithm for foreign fibers in defective cotton based on a lightweight YOLOv8 model(YOLOv8-MMW).Initially,MobileNetV3 lightweight network is introduced to replace the original backbone network to reduce the number of parameters and computational complexity,and improve the real-time detection of network algorithms.Subsequently,a Multi-dimensional Coopera-tive Attention(MCA)mechanism is integrated into the backbone network to boost the interaction of multi-dimensional features,focu-sing the model on small target foreign fibers in defective cotton.Lastly,a dynamic non-monotonic focusing mechanism,WIoUv3,is in-troduced to improve the model's convergence speed and accuracy,enhancing its ability to localize small target foreign fibers.The re-sults show that the improved YOLOv8-MMW model accuracy and average accuracy mean values are 95.5%and 95.8%,respectively.Compared with the original baseline model YOLOv8,the accuracy and average accuracy are increased by 0.9%and 0.1%respective-ly,the model weight is reduced by 56.7%,and the frame rate reaches 367.8 frames/s.The improved model can more quickly and ac-curately identify defective cotton small target foreign fibers,providing technical support for intelligent sorting of defective cotton.

defective cotton foreign fiberYOLOv8attention mechanismlightweightingtarget detection

郭典、李景彬、胡立庆、聂晶、杨朔、杨宏飞、张连生、周杰、冯玉刚

展开 >

石河子大学机械电气工程学院,新疆石河子 832000

新疆仁和纺织科技有限公司,新疆胡杨河 834034

青岛双清智能科技有限公司,山东青岛 430048

疵棉异纤 YOLOv8 注意力机制 轻量化 目标检测

2024

石河子大学学报(自然科学版)
石河子大学

石河子大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.662
ISSN:1007-7383
年,卷(期):2024.42(6)