首页|图引导的特征融合和分组对比学习的域自适应语义分割

图引导的特征融合和分组对比学习的域自适应语义分割

扫码查看
在无监督域自适应语义分割任务中,有效地融合源域和目标域的特征以及解决不同类别像素数量分布不均衡的问题是提升跨域语义分割网络性能的关键.为了充分融合源域和目标域的特征,建立源域和目标域之间的长距离上下文关系,本文构建了双跨域图卷积网络,利用图卷积来引导源域和目标域的特征进行融合.本文分别构造了跨域位置相似矩阵和通道相似矩阵,提出了跨域位置图卷积和跨域通道图卷积.为了解决数据集中存在的类不平衡问题,同时提取到更多域不变特征,本文提出了分组对比学习策略,通过在组内构造正负样本,拉近2个域相同类之间的距离并拉远2个域不同类之间的距离.实验证明,本文提出的方法在数据集GTA5到Cityscapes和SYNTHIA到Cityscapes上的跨域语义分割均取得了良好的效果.
Graph-Guided Feature Fusion and Group Contrastive Learning for Domain Adap-tation Semantic Segmentation
Considering the problem of unsupervised domain adaption semantic segmentation,it is very important to establish a long-distance context relationship between the source domain and the target domain and how to solve the problem of unbalance distribution of different classes of pixels.we propose a dual cross-domain graph convolution network to exploit the long-distance context between source and target domain and fuse the feature of two domains.Specifically,we construct the position similarity matrix and channel similarity matrix of the cross domain and propose the cross-domain position graph convolution and cross-domain channel graph convolution.In order to solve the problem of unbalanced distribution of classes in the datasets and capture more domain invariant feature,we propose a group contrastive learning strategy to narrow the distance between the same class of two domains and widen the distance between the different classes of two domains by constructing positive and negative samples in the group.A large number of experiments show that our method achieves good performance on Urban Scene datasets GTA5 to Cityscapes and SYNTHA to Cityscapes.

graph convolutioncontrastive learningsemantic segmentationdomain adaptation

赵伟枫、谢明鸿、张亚飞、李华锋

展开 >

昆明理工大学信息工程与自动化学院,昆明 650500

昆明理工大学云南省人工智能重点实验室,昆明 650500

图卷积 对比学习 语义分割 域自适应

国家自然科学基金国家自然科学基金

6216101561966021

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(1)
  • 1