首页|基于频谱特征自适应采样的傅里叶单像素成像方法

基于频谱特征自适应采样的傅里叶单像素成像方法

扫码查看
傅里叶单像素成像(Fourier single-pixel imaging,FSI)中成像效率的提升主要借助优化重构算法和采样方法来实现,但在采样次数有限的情况下,FSI无法准确采样关键频率,导致成像质量差.为解决这一问题,提出一种频谱特征自适应采样策略.首先,研究傅里叶域中能量的集中程度,以此确定低频等距预采样的最优半径.进一步,通过预采样低频分量估计关键频谱位置的方式,测量相应的傅里叶系数,最终实现图像重构.与基于高频方向能量连续性的自适应采样方法相比,该方法可以针对不同频谱特征目标,自适应选择较优采样路径,获取关键傅里叶系数,进而改善成像质量,其峰值信噪比提高2.28 dB,结构相似度提高15.83%.因此,该方法在应对FSI对未知特征目标进行成像时,具有高效空间信息采集的优点,有望在单像素快速实时成像中得到应用.
Fourier Single-Pixel Imaging Method Based on Adaptive Sampling of Spectral Features
The improvement of imaging efficiency in Fourier single-pixel imaging(FSI)is mainly achieved with the help of optimized reconstruction algorithms and optimized sampling methods.However,with a limited number of samplings,FSI cannot accurately sample critical frequencies,resulting in poor imaging quality.To solve this problem,a strategy for adaptive sampling of spectral features is proposed.First,the degree of concentration of energy in the Fourier domain is investigated as a way to determine the optimal radius of low-frequency equidistant pre-sampling,and further,the corresponding Fourier coefficients are measured by means of pre-sampling the low-frequency components to estimate the key spectral positions,which ultimately realizes the image reconstruction.Compared with the adaptive sampling method based on energy continuity in the high-frequency direction,this method can adaptively select better sampling paths for different spectral feature targets,obtain the key Fourier coefficients,and then improve the imaging quality,with a peak signal-to-noise ratio increase of 2.28 dB and a structural similarity increase of 15.83%.Therefore,this method has the advantage of efficient spatial information acquisition in response to FSI of unknown feature targets,and is expected to be applied in single-pixel fast real-time imaging.

Fourier single-pixel imagingsampling methodscritical frequenciesadaptive samplingimaging quality

肖振坤、张永峰、魏文卿、邓琥

展开 >

西南科技大学信息工程学院,绵阳 621010

西南科技大学四川天府新区创新研究院,成都 610299

苏州大学光电科学与工程学院,苏州 215006

江苏省先进光学制造技术重点实验室&教育部现代光学技术重点实验室,苏州 215006

特殊环境机器人技术四川省重点实验室,绵阳 621010

展开 >

傅里叶单像素成像 采样方法 关键频率 自适应采样 成像质量

国家自然科学基金

11872058

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(2)
  • 26