首页|基于大模型的联动处置多智能代理协同框架

基于大模型的联动处置多智能代理协同框架

扫码查看
针对指挥员应对重大突发情况时的处置决策难题,提出一种基于大模型的联动处置多智能代理协同框架.该框架通过智能代理角色生成、多层级蒙特卡洛树与交互式提示学习等策略,优化群体决策效率与动作规划,同时引入分层机制与工作流管理理念,通过强化学习奖励函数共享提升协同效率,设计显式与隐式通信模式确保节点状态一致.实验表明,该框架在多种场景下表现优异,与传统任务分配手段相比,大大提高了面对突发事件时的反应速度和处置效率.
Coordination Framework for Collaborative Disposal of Multi-intelligent Agents Based on Large Language Models
Addressing the decision-making conundrum faced by commanders in response to major sudden in-cidents,this paper proposes a coordination framework for collaborative disposal of multi-intelligent agents based on large language models.The framework optimizes collective decision-making efficiency and action planning through strategies such as agent role generation,multi-level Monte-Carlo tree and interactive prompt learning.It introduces hierarchical mechanisms and workflow management concepts,enhancing col-laboration efficiency through the reward function shared among agents.A transparent and implicit communi-cation model ensures node status consistency.Experimental results demonstrate that the framework per-forms well under various scenarios,significantly improving reaction speed and response efficiency com-pared to traditional task allocation methods.

large language models(LLMs)collaborative disposalmulti-intelligence agent(MIA)disposal planning

吴晓宁、李瑞欣、王浪、刘文杰、王宏伟、朱新立、宋江帆、袁梦

展开 >

北方自动控制技术研究所,太原 030006

武警工程大学反恐指挥信息工程教育部重点实验室(立项),西安 710086

大模型 联动处置 多智能代理 处置规划

山西省重点研发计划

202102150401013

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(3)
  • 9