首页|基于SDW-MMSE的广义特征值稳健波束形成方法

基于SDW-MMSE的广义特征值稳健波束形成方法

扫码查看
最大输出信噪比(Signal-to-noise ratio,SNR)准则下,广义特征值(Generalized eigenvalue,GEV)波束形成存在复系数难以控制的问题,在复杂的声学环境中容易导致输出信号严重失真.针对复系数估计问题,本文提出一种基于最小均方误差(Minimum mean square error,MMSE)的复系数估计方法,并通过引入语音失真权重因子(Speech distortion weight,SDW),调节降噪效果和语音失真之间的权重关系,进而提出了基于SDW-MMSE的广义特征值稳健波束形成方法.通过最大似然法估计目标信号和噪音信号的功率谱,进而求解主广义特征向量.进一步基于SDW-MMSE估计复系数,将复系数与主广义特征向量相结合,从而得到基于SDW-MMSE的广义特征值稳健波束形成滤波向量.仿真实验结果表明,本文提出的波束形成方法可有效消除相干噪声和非相干噪声,具有输出信噪比高、语音失真少等稳健性能.
Generalized Eigenvalue Robust Beamforming Based on SDW-MMSE
Under the criterion of maximum output signal-to-noise ratio(SNR),the problem of difficult control of complex-valued coefficients in generalized eigenvalue(GEV)beamforming is encountered,and severe distortion of the output signal can be caused in complex acoustic environments.To address the issue of complex-valued coefficient estimation,a complex-valued coefficient estimation method based on minimum mean square error(MMSE)is proposed in this paper.By introducing a speech distortion weight factor(SDW),the weight relationship between noise reduction and speech distortion is adjusted,thereby proposing a method for generalized eigenvalue robust beamforming based on SDW-MMSE.The power spectra of the target and noise signals are estimated using maximum likelihood method,and the main generalized eigenvectors are then determined.Furthermore,the complex-valued coefficients are estimated,and the complex coefficients are combined with the principal generalized eigenvector to obtain the generalized eigenvalue robust beamforming filter vector based on SDW-MMSE.Through simulation experiments,it is demonstrated that the proposed beamforming method effectively eliminates coherent and incoherent noise,and exhibits robust performance with high output SNR and low speech distortion.

speech enhancementgeneralized eigenvalue beamformingminimum mean square errorspeech distortion weightmaximum likelihood parameter estimation

李海龙、杨飞、杨诗童、路晓庆

展开 >

武汉大学电气与自动化学院,武汉 430072

武汉大学综合能源电力装备及系统安全湖北省重点实验室,武汉 430072

语音增强 广义特征值波束形成 最小均方误差 语音失真权重 最大似然参数估计

国家自然科学基金

52377155

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(3)
  • 2