首页|基于Transformer的路网轨迹重建方法

基于Transformer的路网轨迹重建方法

扫码查看
轨迹重建是针对低采样轨迹数据进行轨迹补充还原的一类轨迹数据处理研究.为了提高轨迹重建的准确性,一些工作通过引入Seq2Seq等深度学习模型来提升轨迹重建的效率与精度,但由于现有工作忽略了轨迹间的长距离依赖问题,导致轨迹还原中还存在准确率不高等问题.本文提出一种基于Transformer的轨迹重建模型ZTrajRec(Zero-based trajectory recovery),通过Transformer编码器捕获轨迹间的长距离依赖,注意力机制用于当前轨迹和历史轨迹相似性查询来进行轨迹在路网上的重建.实验结果表明,在真实北京出租车数据集上,ZTrajRec比基准模型最好效果在召回率上提升 3%~4%.本文最后对重建结果进行了可视化分析以展示其合理性.
Map-Constrained Trajectory Recovery Mechanism Based on Transformer
Trajectory reconstruction is a research field for trajectory restoration of low-sampling rate trajectory data.In recent years,in order to improve the accuracy of trajectory reconstruction,some work used deep learning models such as Seq2Seq to improve the efficiency and accuracy of trajectory recovery.However,most of the existing work ignores the long-distance dependencies between trajectory points,resulting in poor accuracy for trajectory reconstruction.Therefore,this paper proposes a trajectory recovery model,called ZTrajRec(Zero-based trajectory recovery)based on Transformer,which captures the long-distance dependency between trajectories through Transformer encoder,and uses the attention mechanism to take into account the similarity between current trajectory and historical trajectories to reconstruct the trajectory directly on the road network.Experimental results show that,on the real Beijing taxi dataset,ZTrajRec improves the recall rate by 3%—4%,compared to the results of the benchmark models.Finally,the result is visually analyzed to demonstrate its plausibility.

trajectory recoveryroad networkSeq2Seq modelTransformer

梅宇生、赵卓峰

展开 >

北方工业大学信息学院,北京 100144

大规模流数据集成与分析技术北京市重点实验室(北方工业大学),北京 100144

轨迹重建 路网 序列到序列模型 Transformer

北京市自然科学基金

4202021

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(3)
  • 22