首页|融合类增强与多尺度自适应的小样本学习方法

融合类增强与多尺度自适应的小样本学习方法

扫码查看
为了解决小样本学习存在特征信息提取不足、难以准确地捕获局部明显特征信息的问题,提出了一种融合类增强与多尺度自适应的小样本学习方法.首先在特征的层面上对图像进行类增强,通过将特征图的每次激活与其邻域相关联来编码丰富的语义结构,使提取后的类内特征明显,更利于当前的分类任务.其次通过多尺度特征生成来提取不同尺度上图像特征的低层表示.最后对每个尺度上的语义相关矩阵进行权重分配与相似元素最大化计算查询图像与各支持集类别图像之间的语义相似度,多尺度信息进行融合后,对目标图像进行分类.在 5-way 1-shot和 5-way 5-shot设置中,该方法在miniImageNet数据集上的均值平均精度(mean Average precision,mAP)分别为56.83%和75.76%,在常用细粒度图像数据集Stanford Cars和CUB-200-2011 分类基准上分别达到了 79.33%和 93.92%、66.33%和85.78%,均优于现有方法的最好结果.
Few-Shot Learning Method Based on Class Enhancement and Multi-scale Adaptation
In order to solve the problems of the insufficient feature information extraction and the difficulty in capturing local obvious feature information accurately in few-shot learning,a method combining class enhancement and multi-scale adaptation is proposed.Firstly,the class enhancement is performed on the image at the level of features,and rich semantic structures are encoded by associating each activation of the feature map with its neighborhood,thus making the extracted intra class features obvious and more conducive to the current classification task.Secondly,low-level representations of image features at different scales are extracted through multi-scale feature generation.Finally,the semantic correlation matrix on each scale is weighted and similarity elements are maximized to calculate the semantic similarity between the query image and each support set category image.After the fusion of multi-scale information,the target images are classified.In the 5-way 1-shot and 5-way 5-shot settings,the mean average precision(mAP)of this method on the miniImageNet dataset is 56.83%and 75.76%respectively,and it achieves 79.33%and 93.92%,66.33%and 85.78%on the commonly used fine grained image dataset Standard Cars and CUB-200-2011 classification benchmarks,respectively,which are superior to the best results of the existing methods.

few-shot learningclass enhancementmulti-scale feature generationadaptive task attention

董驰静、张孙杰、任涵

展开 >

上海理工大学光电信息与计算机工程学院,上海 200093

小样本学习 类增强 多尺度特征生成 自适应任务注意

国家自然科学基金国家自然科学基金

6167327661603255

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(3)
  • 2