首页|CI-WGAN:融合临床指标和WGAN的孤独症个体化脑功能连接网络生成

CI-WGAN:融合临床指标和WGAN的孤独症个体化脑功能连接网络生成

扫码查看
脑功能连接(Functional connectivity,FC)网络作为潜在的脑影像标志物对孤独症谱系障碍(Autism spectrum disorder,ASD)的辅助诊疗研究具有重要作用.然而现有的FC生成方法大多仅基于脑影像数据,未充分考虑个体的临床指标从而易丢失疾病的特异性信息.而且,ASD作为一种谱系障碍,其临床指标存在显著的个体化差异.因此,仅基于脑影像数据的传统生成模型在生成准确的且能反映个体化临床指标的ASD个体FC的任务上存在挑战.针对上述挑战,提出了个体化临床指标引导的沃瑟斯坦生成对抗网络模型(Clinical-indicator-aware Wasserstein generative adversarial network,CI-WGAN),用于生成孤独症个体化FC网络.该模型引入个体化临床指标引导机制,实现了高精度ASD患者FC网络的生成.基于全世界最大孤独症脑影像公开数据集之一的ABIDE I数据集进行实验,CI-WGAN生成FC与真实FC的峰值信噪比(Peak signal-to-noise ratio,PSNR)、结构相似度(Structural similarity,SSIM)与平均绝对误差(Mean absolute error,MAE)分别达到 19.037、0.236 与0.178,相较于其他FC生成模型分别提升了3%、12%与2%.此外基于生成FC和独立临床验证指标的表征相似度分析(Representational similarity analysis,RSA),CI-WGAN生成的FC相较其他模型生成FC最少提高了0.1倍和3.7倍,证明了CI-WGAN生成的FC包含更多的ASD个体特异性信息.本文提出的CI-WGAN模型实现了高质量个体化FC的生成,为ASD的早期诊断和个性化治疗提供了有力的技术支持.
CI-WGAN:Integrating Clinical Indicators and WGAN for Generating Individual-ized Brain Functional Connectivity Networks in Autism Spectrum Disorder
Brain functional connectivity(FC)networks serve as potential neuroimaging biomarkers for the auxiliary diagnosis and treatment of autism spectrum disorder(ASD).However,most existing models are merely based on neuroimaging data and neglect individual clinical indicators,leading to the loss of disorder-specific information.And,ASD is a spectrum disorder exhibiting significant individual differences in terms of clinical indicators.Therefore,these traditional generative models are limited in generating accurate individual FC of ASD that reflects specific clinical symptoms.To address this limitation,a novel clinical-indicator-aware Wasserstein generative adversarial network(CI-WGAN)is proposed to generate individual FC of ASD.The proposed model introduces an effective guidance mechanism based on individual clinical indicators to generate individualized FC networks.Extensive experiments are performed on ABIDE I dataset,one of the largest publicly available ASD brain imaging datasets.The results show that the generated FC of the proposed method achieves promising peak signal-to-noise ratio(PSNR)of 19.037,structural similarity(SSIM)of 0.236 and mean absolute error(MAE)of 0.178,showing satisfying improvements of 3%,12%and 2%respectively compared to the traditional models.Additionally,the representational similarity analysis(RSA)are performed between the generated FC and two independent clinical indicators.The results show that the RSA values based on the proposed method increase by 0.1 and 3.7 times compared to those based on traditional models,demonstrating that the FC generated via the proposed CI-WGAN contains more individual symptom information of ASD.In summary,the proposed CI-WGAN model achieves high-quality generation of individual FC,and provides a powerful tool for the early diagnosis and personalized treatment of ASD.

autism spectrum disorder(ASD)brain functional connectivitygenerative adversarial networkclinical indicator guidance mechanismgradient penalty mechanism

孙海林、严加栋、张嵘、KENDRICK Keith、蒋希

展开 >

电子科技大学生命科学与技术学院,成都 611731

麦吉尔大学蒙特利尔神经研究所,蒙特利尔 H3A 2B4

北京大学基础医学院神经生物学系,北京 100191

北京大学神经科学研究所,北京 100191

神经科学教育部重点实验室,北京 100191

卫健委神经科学重点实验室,北京 100191

北京大学医学部孤独症研究中心,北京 100191

展开 >

孤独症谱系障碍 大脑功能连接 生成对抗网络 临床指标引导机制 梯度惩罚机制

国家自然科学基金四川省科技计划资助项目

622760502024NSFSC0655

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(4)