首页|基于多任务强化学习的地形自适应模仿学习方法

基于多任务强化学习的地形自适应模仿学习方法

扫码查看
地形自适应能力是智能体在复杂地形条件下稳定运动的基础,而由于机器人动力学系统的复杂性,传统逆动力学方法通常难以使其具备这种能力.现有利用强化学习在解决序列决策问题上的优势训练智能体地形适应能力的单任务学习方法无法有效学习各类地形中的相关性.事实上,复杂地形自适应任务可以认为是一种多任务,子任务间的关系可以用不同地形影响因素来衡量,通过子任务模型的相互学习解决数据分布信息获取不全面的问题.基于此,本文提出一种多任务强化学习方法.该方法包含1个由子任务预训练模型组成的执行层和1个基于强化学习方法、采用软约束融合执行层模型的决策层.在LeggedGym地形仿真器上的实验证明,本文方法训练的智能体运动更加稳定,在复杂地形上的摔倒次数更少,并且表现出更好的泛化性能.
Terrain-Adaptive Motion Imitation Based on Multi-task Reinforcement Learning
Terrain adaptive ability is the basis for the stable movement of agents under complex terrain conditions.Due to the complexity of the dynamical systems of these agents,such as humanoid robots,it is usually difficult for traditional inverse dynamics methods to have such ability.Recent research has used the advantages of reinforcement learning in solving sequential decision-making problems to train agents to adapt to terrain.However,these single-task learning methods cannot effectively learn the correlation in various terrains.In fact,complex terrain adaptive tasks can be considered as a multi-task problem,and the relationship between sub-tasks can be measured by different terrain factors.And then,the problem of incomplete acquisition of data distribution information can be solved by mutual learning of sub-task models.Therefore,this paper proposes a multi-task reinforcement learning method.It contains an execution layer which is consist of pre-trained subtask models and a decision layer based on reinforcement learning method.Moreover,the decision layer uses soft constraints to fuse models of the execution layer.Experiments on LeggedGym terrain simulator prove that the agent trained by the method in this paper is more stable in movement and has fewer falls down on complex terrains,showing better generalization performance.

multi-task learninglearning by imitationreinforcement learningterrain influencing factorLeggedGym terrain simulator

余昊、梁宇宸、张驰、刘跃虎

展开 >

西安交通大学软件学院,西安 710049

西安交通大学人工智能学院,西安 710049

多任务学习 模仿学习 强化学习 地形影响因素 LeggedGym地形仿真器

科技创新2030"新一代人工智能"重大项目

2018AAA0102504

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(5)