首页|集成自注意力机制的医学图像分割方法

集成自注意力机制的医学图像分割方法

扫码查看
针对UNet架构在医学图像分割中捕捉局部特征及保留边缘细节的局限性,提出了一种融合自注意力机制的改进型UNet算法.该算法基于传统编码-解码结构,引入多尺度卷积(Multi-scale convolution,MSC)模块以实现多粒度特征提取,同时集成卷积-自注意力(Convolution mixer attention,CMA)模块,结合卷积层的局部特征建模和自注意力层的全局上下文建模.在BUSI和DDTI数据集分割任务中,相比现有经典网络架构,大量实验数据验证了本模型优异的分割能力.此外,统计学数据分析、消融实验进一步验证了MSC和CMA模块的有效性.该研究为高精度医学图像分割提供了一种创新方法,对于促进医学诊断的精确性和效率具有重要的理论与实践意义.
Medical Image Segmentation Method with Integrated Self-attention
Aiming at the limitations of the UNet architecture in capturing local features and preserving edge details in medical image segmentation,this paper presents an improved UNet algorithm integrating self-attention mechanism.The proposed algorithm is based on traditional encoder-decoder structure,incorporating a multi-scale convolution(MSC)block for multi-granularity feature extraction,and a convolution mixer attention(CMA)block,which combines the modeling of local features by convolutional layers with global contextual modeling by self-attention layers.In the segmentation task of BUSI and DDTI datasets,compared with the existing classical network architecture,a large number of experimental data verify the excellent segmentation ability of the model.Additionally,Statistical data analysis and ablation studies further confirm the effectiveness of the MSC and CMA modules.This research provides an innovative approach for high-precision medical image segmentation,holding significant theoretical and practical implications for enhancing the accuracy and efficiency of medical diagnoses.

UNetmedical image segmentationconvolutional neural network(CNN)multi-scale convolution(MSC)attention mechanism

赵凡、张学典

展开 >

上海理工大学光电信息与计算机工程学院,上海 200093

UNet 医学图像分割 卷积神经网络 多尺度卷积 注意力机制

国家重点研发计划资助项目

2021YFB2802300

2024

数据采集与处理
中国电子学会 中国仪器仪表学会信号处理学会 中国仪器仪表学会中国物理学会微弱信号检测学会 南京航空航天大学

数据采集与处理

CSTPCD北大核心
影响因子:0.679
ISSN:1004-9037
年,卷(期):2024.39(5)