首页|基于遥感产品的全球典型国家PM2.5浓度时空分布特征

基于遥感产品的全球典型国家PM2.5浓度时空分布特征

扫码查看
在全球化背景下,PM2.5污染己成为一种全球现象,梳理不同国家PM2.5浓度的时空差异化分布,已越来越成为学术界的重要课题.以全球27个典型国家为研究对象,采用集合经验模态分解、GIS地图表达、比较研究法,对1998-2019年PM2.5污染的时空变化特征进行分析.研究结果显示:①研究期内全球27个典型国家的PM2.5波动趋势划分为持续上升、持续下降、先升后降、先降后升4种类型,70%的国家在研究时段内表现出PM2.5污染转好趋势;②除非洲区域典型国家外,其余同一区域的国家月度变化具有相似性;③与北美、欧洲、大洋洲区域的典型国家相比,亚洲、中东及非洲地区典型国家的PM2.5浓度季节变化的幅度要更大;④从20年的年均浓度上来看,巴基斯坦、印度、孟加拉国、伊朗、埃及、沙特阿拉伯、土耳其和尼日利亚的PM2.5浓度更高,且已超过WHO提出的PM2.5过渡目标I污染等级(35 μg/m3).长时间序列下PM2.5污染时空差异特征的比较研究可补充全球国家宏观尺度的PM25浓度特征研究,为不同经济发展水平国家的污染治理提供科学参考.
Spatial and temporal distribution characteristics of PM2.5 concentration in global typical countries based on remote sensing products
In the context of globalization,PM2.5 pollution has become a global phenomenon.Understanding the spatial and temporal differential distribution of PM2.5 concentrations in differ-ent countries has become an increasingly important topic for governments.Taking 27 typical countries in the world as the research objects,Ensemble Empirical Mode Decomposition(EEMD),GIS map representation,and comparative research methods were used to analyze the spatial and temporal variation characteristics of PM2.5 pollution from 1998 to 2019.The results show that:① The trend fluctuation of PM2.5 in the global typical countries in the study area was divided into four types:'continuous rise','continuous fall','first rise and then fall'and'first fall and then rise.70%of the countries showed a trend of improving PM2.5 pollution during the study period;② Except for Africa,the monthly changes of countries in the same regions are sim-ilar;③ Compared with North America,Europe,and Oceania,Asia,the Middle East,and Africa have larger seasonal changes in PM2.5 concentrations;④ From the perspective of the average an-nual concentration,Pakistan,India,Bangladesh,Iran,Egypt,Saudi Arabia,Turkey and Nigeria had higher PM2.5 concentration in the past 20 years,which also have exceeded the PM2.5 transi-tion target I pollution level(35μg/m3)proposed by WHO.The comparative study of spatial and temporal differences of PM2.5 pollution under long time series can provide scientific reference for countries with different levels of economic development,and complement the global national macro scale PM2.5 concentration characteristics.

remote sensing productsEensemble Empirical Mode Decompositionglobal typi-cal countriesPM2.5spatiotemporal distribution

陶天慧、石忆邵、李嘉琪、彭志宏

展开 >

浙江水利水电学院测绘与市政工程学院,杭州 310018

同济大学测绘与地理信息学院,上海 200092

湖南城市学院市政与测绘工程学院,益阳 413000

遥感产品 集合经验模态分解 全球典型国家 PM2.5 时空分布

深圳市市委市政府2020年度重点调研课题2022年度湖南省市联合基金项目

2021FY0001-25882022JJ50272

2024

世界地理研究
中国地理学会

世界地理研究

CSTPCDCHSSCD北大核心
影响因子:1.232
ISSN:1004-9479
年,卷(期):2024.33(7)