首页|多源大数据下中国特大城市人口夜间热力特征与影响因素研究

多源大数据下中国特大城市人口夜间热力特征与影响因素研究

扫码查看
掌握城市人口夜间的时空热力动态变化和影响因素,对繁荣城市夜间经济和推动城市管理等都具有重要的意义.近年来城市多源大数据的不断发掘,为实时追踪城市人口夜间热力变化提供了可能.基于百度人口热力图、珞珈(LJ1-01)夜光遥感和城市兴趣点(POI)等多源大数据,以北京、上海、广州、深圳、成都和武汉6座特大城市为案例区,构建人口夜间热力模型,测算了上述6座城市在20:00-20:30期间的人口热力特征,并进一步采用地理探测器和地理加权回归方法分析了影响案例区人口夜间热力特征的因素.结果表明:(1)特大城市人口夜间热力分布与城市主要道路空间分布基本一致,主要呈现出"核心-边缘"梯度递减、"一核多中心"连片分布和"组团式"分布三种类型;(2)与常住人口相比,各城市人口夜间热力规模较小,平均仅占常住人口的0.416‰,且接近47%的人口夜间聚集在中等热力区;(3)城市土地利用混合度、商业活力和道路通达度是影响城市人口夜间热力的首要因素,但在不同的城市和地区影响程度有所差异.研究结果对特大城市制定夜间消费政策和优化城市人口夜间管理具有较强的现实意义,也为今后城市夜间建设提供有效参考.
Research on the thermal characteristics and influencing factors of population night-time in Chinese megacities under multi-source big data
It is of great significance to master the dynamic changes and influencing factors of the temporal and spatial thermal dynamics of the urban population at night-time for the prosperi-ty of urban night-time economy and the promotion of urban management.However,the current authoritative census data is still faced with the bottleneck that it is difficult to track the night-time thermal changes of the urban population in real-time,but the continuous exploration of ur-ban multi-source big data in recent years provides a possibility to break through the above bottle-neck.Based on multi-source big data such as the Baidu population heat map,Luojia(LJ1-01)lu-minous remote sensing and urban Point of Interest(POI),and taking six megacities of Beijing,Shanghai,Guangzhou,Shenzhen,Chengdu and Wuhan as case areas,the population heat charac-teristics of these six cities during 20:00-20:30 were calculated by constructing a population heat model at night-time.Furthermore,the factors affecting the night-time heat characteristics of the population in the case area are analyzed using a geographical detector and geographical weight-ed regression method.The results show that:(1)the night-time heat distribution of the popula-tion in megacities is basically the same as the spatial distribution of main roads,which mainly presents three types:"core-edge"gradient decline,"one-core multi-center"contiguous distribu-tion and"group-type"scattered distribution;(2)Compared with the resident population,the night-time heat scale of urban population is smaller,accounting for only about 0.416‰ of the resident population on average,and nearly 47%of the population gathers in the medium heat ar-ea at night-time.(3)The mixing degree of urban land use,commercial activity and road accessi-bility are the main factors affecting the night-time heat of the urban population,but the influence degree varies in different cities and regions.The results of this study have practical significance for the formulation of night-time consumption policies and also provide reference for future ur-ban night-time construction.

population night-time heatBaidu population heat mapPoints of Interest(POI)GeodetectorGeographically weighted regression Model

吴淼淼、师满江、曹琦、宁志中

展开 >

西南科技大学土木工程与建筑学院,绵阳 621010

中国科学院地理科学与资源研究所,北京 100101

人口夜间热力 百度人口热力图 兴趣点(POI) 地理探测器 地理加权回归模型

2024

世界地理研究
中国地理学会

世界地理研究

CSTPCDCHSSCD北大核心
影响因子:1.232
ISSN:1004-9479
年,卷(期):2024.33(12)