首页|基于K-means算法的建筑群震害分析模型缩减方法

基于K-means算法的建筑群震害分析模型缩减方法

扫码查看
基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考.为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法.该方法采用K-means聚类算法,首先基于建筑结构属性向量对建筑群进行聚类,将相似的建筑结构聚为一组;然后从每组选取一个代表建筑组成建筑群缩减模型,通过减少需要分析的建筑结构数量来减少建筑群震害模拟的计算量.本文对传统的K-means算法进行改进,通过设定组内建筑结构的差异上限自动调整聚类分组数量;提出将具体地震动作用下结构地震损伤指数作为结构属性向量进行聚类,并通过算例对比分别采用两种缩减模型,即基于损伤指数聚类的缩减模型与基于结构力学模型参数聚类的缩减模型,计算结构损伤状态准确程度.对比结果表明:在聚类分组数量相同的情况下,基于损伤指数的分组明显优于基于模型参数的分组,采用模型缩减方法能够在保证足够计算精度前提下显著减少建筑群震害模拟计算量和计算时间.
K-means clustering based model reduction method for seismic damage analysis of urban buildings
Refined seismic damage simulation technology for urban buildings based on nonlinear time history analy-sis provides necessary basis and reference for decision-making for pre-earthquake disaster prevention and post-earth-quake emergency rescue.In order to reduce calculation amount and calculation time of seismic damage simulation,a model reduction method based on clustering algorithm for urban buildings is proposed in this paper.This method firstly clusters urban buildings based on their attribute vectors using K-means clustering algorithm,classifying the similar buildings into the same group,then selects a representative building from each group to form a reduction model.In this way,this method reduces the calculation amount of seismic damage simulation for urban buildings by reducing the number of building structures needed to be analyzed.In this study,traditional K-means algorithm is improved to automatically adjust the number of clusters based on the preset upper limit of the difference among buildings in the same group.The structural seismic damage index is used as the attribute vector of the building structure for clustering for the first time,and reduction model of urban buildings based on damage index is compared with that based on structural model parameter,and the results show that the damage index-based grouping is significantly better than the grouping based on model parameters,using model reduction method can significantly reduce calculation work in the premise of ensuring sufficient accuracy.

urban buildingsK-means algorithmmodel reductionstructural model parameterseismic damage index

陈夏楠、张令心、林旭川、王祺

展开 >

中国地震局工程力学研究所 地震工程与工程振动重点实验室,黑龙江 哈尔滨 150080

中国地震局工程力学研究所 地震灾害防治应急管理部重点实验室,黑龙江 哈尔滨 150080

城市建筑群 K-means算法 模型缩减 结构模型参数 地震损伤指数

国家重点研发计划黑龙江省头雁行动计划资助

2022YFC3003604

2024

世界地震工程
中国地震局工程力学研究所 中国力学学会

世界地震工程

CSTPCD北大核心
影响因子:0.523
ISSN:1007-6069
年,卷(期):2024.40(1)
  • 4