首页|一种基于粒子群优化BP神经网络技术的震后压埋人员手机定位方法

一种基于粒子群优化BP神经网络技术的震后压埋人员手机定位方法

扫码查看
近年全球地震灾害频发,如何快速准确定位压埋人员方位是震后搜救工作中的重点和难点.本文提出的基于粒子群优化BP神经网络技术震后压埋人员手机定位方法,通过对压埋手机的定位,间接定位到被压埋人员.利用WiFi探针捕捉被压埋手机发出的接收信号强度数据,采用高斯-卡尔曼混合滤波对数据进行处理.以粒子群优化BP神经网络解算出的压埋距离为基础,融合对数衰减模型与多项式衰减模型,建立多衰减模型融合的压埋距离修正模型,获取更为精确的压埋距离.通过加权六点质心定位算法求解压埋手机位置.实验结果表明:多衰减模型融合的压埋距离修正模型定位误差为0.579 m,相较于单一的信道衰减模型与神经网络,定位精度分别提升43.5%、30.9%和12.7%.
Mobile phone location method for buried personnel after earthquake based on particle swarm optimization BP neural network technology
In recent years,global earthquake disasters have occurred frequently,making the rapid and accurate localization of buried personnel a focal and challenging aspect of post-earthquake search and rescue operations.This paper proposes a novel method for locating buried personnel based on particle swarm-optimized BP neural network technology,which indirectly determines the position of buried individuals through the localization of their buried mobile phones.By capturing the received signal strength data emitted by buried mobile phones using WiFi probes,the data is processed using Gaussian-Kalman hybrid filtering.Utilizing the distance to buried personnel calculated by the particle swarm-optimized BP neural network,a multi-decay model fusion approach is established by combining logarithmic attenuation and polynomial attenuation models to create a more precise correction model for the buried distance.The buried mobile phone location is then determined using the weighted six-point centroid localization algorithm.Experimental results demonstrate that the multi-decay model fusion-based buried distance correction model achieves a positioning error of 0.579 meters,yielding an improvement of 43.5%,30.9%,and 12.7%in localization accuracy compared to single-channel attenuation models and neural networks,respectively.

earthquake rescuePSO-BP neural networkweighted six-point centroid positioningmultichannel modelhybrid filtering

付锐、肖东升

展开 >

西南石油大学 土木工程与测绘学院,四川 成都 610500

西南石油大学 测绘遥感地理信息防灾应急研究中心,四川 成都 610500

成都高新减灾研究所,四川 成都 610041

地震救援 PSO-BP神经网络 加权六点质心定位 多信道模型 混合滤波

四川省重大科技计划项目

23QYCX0053

2024

世界地震工程
中国地震局工程力学研究所 中国力学学会

世界地震工程

CSTPCD北大核心
影响因子:0.523
ISSN:1007-6069
年,卷(期):2024.40(1)
  • 18