首页|适用于区域建筑群实时震害模拟的LSTM-FC组合深度网络模型研究

适用于区域建筑群实时震害模拟的LSTM-FC组合深度网络模型研究

扫码查看
建筑物破坏在地震灾害中往往会导致巨大损失,对城市建筑群进行灾前灾时的震害预测具有重要意义.传统BP(back propagation)网络和CNN(convolutional neural networks)网络等人工智能方法在进行震害预测时多集中于提取建筑物信息.然而,这些方法在处理地震波的时序数据方面有所不足,导致其在整合和分析对地震灾害预测至关重要的时序相关因素时效果有限.因此,本文提出一种耦合LSTM(long short-term memory)和FC(fully connected)神经网络的震害预测方法.LSTM网络擅长处理具有时间序列特性的地震波信息,能够捕捉和分析随时间变化的地震波动模式.同时,全连接网络可用于综合分析所有相关的震害因子.通过对云浮地区 265 栋典型钢混建筑进行指标量化并确定输入指标(震害影响因子)和输出指标(震害指数),利用LSTM-FC组合深度网络、CNN网络和BP网络模型对数据进行训练并优化.通过将LSTM-FC网络模型的预测结果与弹塑性时程分析比较,发现该模型在拟合效果和精度方面优于传统的BP和CNN模型.拟合效果提升了 36.8%和10.6%,精度分别提升了 77.6%和 91.7%,表明LSTM-FC网络在地震损害预测上更为有效.同时,将该方法应用于广东省云浮市钢混结构群震害预测,构建的易损性矩阵与华南地区的易损性矩阵均值进行了对比,显示误差相对较小,说明该模型不仅理论上可行,在实际应用中也能表现出较高的准确性和有效性.
Combined LSTM-FC deep network modeling for real-time earthquake hazard simulation of regional building complexes
Building damage often leads to huge losses in earthquake disasters,and it is of great significance to predict the earthquake damage of urban building complexes before and during disasters.Artificial intelligence methods such as traditional BP(back propagation)networks and CNN(convolutional neural networks)networks mostly focus on extracting building information when performing earthquake damage prediction.However,these methods are deficient in processing time-series data of seismic waves,which leads to their limited effectiveness in integrating and analyzing time-series correlations that are crucial for seismic hazard prediction.Therefore,this paper proposes a coupled LSTM(long short-term memory)and FC(fully connected)neural network for earthquake hazard prediction.The LSTM network excels in processing seismic wave information with time-series characteristics,and is able to capture and analyze seismic fluctuation patterns over time.Meanwhile,the Fully Connected network can be used to synthesize and analyze all relevant seismic hazard factors.By quantifying the metrics and determining the input metrics(seismic impact factors)and output metrics(seismic indices)for 265 typical steel-concrete buildings in Yunfu area,the data was trained and optimized by using the LSTM-FC combined deep network,CNN network and BP network model.By comparing the prediction results of the LSTM-FC network model with the elasto-plastic time-range analysis,it is found that the model outperforms the traditional BP and CNN models in terms of fitting effect and accuracy.The fitting effect was improved by 36.8%and 10.6%,and the accuracy improved by 77.6%and 91.7%,respectively,indicating that the LSTM-FC network is more effective in earthquake damage prediction.Meanwhile,the method is applied to the earthquake damage prediction of steel-concrete structural clusters in Yunfu City,Guangdong Province,and the constructed susceptibility matrix is compared with the mean value of the susceptibility matrix in South China,which shows that the error is relatively small,indicating that the model is not only theoretically feasible,but also can show high accuracy and effectiveness in practical applications.

earthquake damage predictionLSTM networkfully connected networksteel and concrete building

孙海、徐晓君、邢启航、张孝伟、姜慧、阮雪景

展开 >

中国海洋大学 工程学院,山东 青岛 266100

中国海洋大学 海洋生态与环境教育部重点实验室,山东 青岛 266100

广东省地震局 地震监测和减灾技术重点实验室,广东 广州 510070

青岛农业大学 建筑工程学院,山东 青岛 266109

展开 >

震害预测 LSTM网络 全连接网络 钢混建筑物

国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目青岛市自然科学基金项目山东省科技重大专项&&

4190618552071307U1901602-0523-2-1-61-zyydjch2020CXGC010702

2024

世界地震工程
中国地震局工程力学研究所 中国力学学会

世界地震工程

CSTPCD北大核心
影响因子:0.523
ISSN:1007-6069
年,卷(期):2024.40(3)
  • 8