首页|基于中国强震动数据的PhaseNet网络捡拾P波到时研究

基于中国强震动数据的PhaseNet网络捡拾P波到时研究

扫码查看
快速和准确捡拾地震P波到时是地震预警技术的基础工作之一.PhaseNet等U形网络已在"谛听"测震数据集上取得良好的震相捡拾结果,旨在提升处理ML3.0 以下的地震的能力.目前针对有限中国强震动数据的震相捡拾研究较少,地震预警主要是针对处理ML3.0 以上的地震.该研究以在地震预警中快速和准确捡拾地震P波到时为目的,直接迁移和构建PhaseNet的衍生网络,探究利用有限中国强震动数据重训的网络模型是否具有良好的捡拾P波表现.研究结果表明:PhaseNet及其衍生网络模型的精确度、召回率、F1 分数、捡拾误差均值(μ)和标准差(δ)约为 0.942、0.930、0.937、-20 ms和 200 ms左右,具有良好的捡拾P波到时精度和泛化性能;此外,PhaseNet及其衍生网络在高信噪比条件下捡拾效果良好,但对于低信噪比数据的捡拾效果仍有待提升.
P-wave arrival picking using Chinese strong-motion acceleration records based on PhaseNet
Rapid and accurate P-wave arrival picking is one of the basic works of earthquake early warning.U-shaped networks such as PhaseNet have achieved good P/S arrival picking performance on the"DiTing"Chinese seismic velocity data,mainly focus on the earthquakes with ML less than 3.0.Currently,there are few studies on Chinese strong-motion records which belong to small data volume.The earthquake early warning(EEW)mainly focus on the earthquakes with ML greater than 3.0.For quickly and accurately picking up P-arrival on EEW,we explore the PhaseNets whether could achieve good performance which are trained using the small-data-volume Chinese strong-motion acceleration records As a result of the limitation of the longer time window of the model's inputs and the difference between the velocity and acceleration records,it is not totally suitable for the P-wave arrival picking when using the Chinese strong-motion acceleration records.To pick the P-wave arrivals under short time window in earthquake early warning accurately and rapidly,we rebuild and transfer the PhaseNet and its derivative networks using the China strong-motion acceleration records.The results show that the precision,recall,F1 score,picking error mean(μ),and standard deviation(δ)of PhaseNet and its derived network models are approximately 0.942、0.930、0.937,-20(ms),and 200(ms).These models have accurate and generalization performance on P-wave arrival.In addition,PhaseNet and its derivative networks perform well on high signal-to-noise records,and still need to be improved on the low signal-to-noise ratio records.

deep learningChinese strong-motion acceleration recordsP-wave arrival pickingPhaseNetearthquake early warning

侯宝瑞、代昊祯、宋晋东、李山有

展开 >

中国地震局工程力学研究所 地震工程与工程振动重点实验室,黑龙江 哈尔滨 150080

地震灾害防治应急管理部重点实验室,黑龙江 哈尔滨 150080

深度学习 中国强震动数据 P波到时捡拾 PhaseNet网络 地震预警

中国地震局工程力学研究所所长基金项目

2023B01

2024

世界地震工程
中国地震局工程力学研究所 中国力学学会

世界地震工程

CSTPCD北大核心
影响因子:0.523
ISSN:1007-6069
年,卷(期):2024.40(4)