首页|烧结系统智能制造的发展现状与展望

烧结系统智能制造的发展现状与展望

扫码查看
为提升烧结工艺的智能制造水平,本文以大数据为核心线索,全面探讨了参数预测、图像识别、过程控制和系统平台等在烧结工艺中的应用.工艺参数预测有效提高了生产效率,保障了烧结矿质量;图像识别技术赋予机器"感知"能力,使其能够科学有效地对信息进行规划分类;烧结智能控制系统的水分、配料和终点控制应用显著提高了生产效率和产品质量,为烧结工艺智能化发展和钢铁工业可持续进步奠定了坚实基础;烧结大数据平台的实时数据分析确保数据的实时性与有效性,为企业烧结生产提供科学依据,提高了精准度和运行速度.在大数据的引导下,烧结工艺的智能制造水平得到显著提升,企业生产效率和烧结矿质量均得到有效保证.智能控制技术的快速发展使得钢铁工业迈向智能制造的转型升级成为必然趋势.
Development status and prospect of smart manufacturing of sintering system
In order to improve the smart manufacturing level of the sintering process,the application of parameter prediction,image recognition,process control and system platform in the sintering process is comprehensively discussed with the big data as the core clue.The prediction of process parameters effectively improves the production efficiency and ensures the quality of sinter.Image recognition technology gives machines an ability to"perceive",enabling them to plan and classify information scientifically and effectively.The application of moisture,accessory and endpoint control of the intelligent control system of sintering has significantly improved the production efficiency and product quality,and laid a solid foundation for the intelligent development of the sintering process and the sustainable progress of the steel industry.The real-time data analysis of the big data platform of sintering ensures the timeliness and effectiveness of the data,provides a scientific basis for the sintering production of the enterprise,and improves the accuracy and operation speed.Under the guidance of the big data,the smart manufacturing level of the sintering process has been significantly improved,and the production efficiency and sinter quality of the enterprise have been effectively guaranteed.The rapid development of intelligent control technology has made the transformation and upgrading of the steel industry towards intelligent manufacturing an inevitable trend.

sintering systemsmart manufacturingparameter predictionimage recognitionintelligent control

李福民、侯炬才、刘小杰、李欣、李宏扬、李红玮

展开 >

华北理工大学冶金与能源学院,河北唐山 063210

华北理工大学河北省现代冶金技术重点实验室,河北唐山 063210

烧结系统 智能制造 参数预测 图像识别 智能控制

唐山市科技局项目国家自然科学基金青年基金资助项目

23130202E52004096

2024

烧结球团
中冶长天国际工程有限责任公司(原长沙冶金设计研究院)

烧结球团

北大核心
影响因子:0.322
ISSN:1000-8764
年,卷(期):2024.49(1)
  • 31