首页|基于YOLOv3的袋式除尘器滤袋破损自动检测方法

基于YOLOv3的袋式除尘器滤袋破损自动检测方法

扫码查看
干式除尘装置中袋式除尘器的滤袋在长时间使用后会出现破损,造成能源消耗增加、除尘效率降低、污染环境等严重问题.为此,本文采用在除尘舱室处搭建粉尘烟雾检测摄像头,并基于YOLOv3算法检测袋口烟雾的泄漏情况.试验检测步骤:①根据真实除尘舱室尺寸设计袋式除尘器袋口烟雾泄漏实验室平台,采集不同洞口烟雾泄漏的图像数据;②使用软件标注这些图像数据;③搭建Darknet深度学习框架,采用YOLOv3算法对图像数据进行训练,并依据模型计算结果识别破袋情况.结果表明:模型对于批量图像的识别准确率能达到91%以上,对于连续视频的识别准确率可达95.65%.本文系统可以减少除尘器运行中的人工检测,降低工厂人力资源成本和工人劳动强度,可以避免生产中的安全隐患和损失,可以为工厂的生产安全及定期维护提供技术指导,也为全厂智能化生产提供了有效的方案.
Automatic detection method on filter bag damage of bag filter based on YOLOv3
The filter bag of the bag filter in the dry dust removal device will be damaged after long-term use,resulting in serious problems such as increased energy consumption,reduced dust removal efficiency,and environmental pollution.Therefore,a dust and smoke detection webcam is built at the dust removal chamber,and the leakage of smoke at the hole is detected based on the YOLOv3 algorithm.The test and detection steps are as follows:1)According to the size of the real dust removal chamber,the smoke leakage laboratory platform at the hole of the bag filter is designed,and the image data of smoke leakage at different holes are collected;2)An software is used to label these image data;3)The Darknet deep learning framework is built,the YOLOv3 algorithm is used to train the image data,and the broken bag condition is identified according to the calculation results of the model.The results show that the recognition accuracy of the model can reach more than 91%for batch images and 95.56%for continuous videos.The system in this paper can reduce the manual detection in the operation of the dust collector,reduce the cost of human resources and the labor intensity of workers,avoid potential safety hazards and losses in production,provide technical guidance for the production safety and regular maintenance of the factory,and also provide effective solutions for the intelligent production of the whole plant.

flue gas dust removalbag dust collectormachine learningpicture recognitionYOLOv3

李旭东、廖婷婷、乐文毅、曾小信、陈思墨、李宗平

展开 >

中冶长天国际工程有限责任公司工程技术研究中心,湖南长沙 410205

中冶长天国际工程有限责任公司国家烧结球团装备系统工程技术研究中心,湖南长沙 410205

烟气除尘 布袋除尘器 机器学习 图片识别 YOLOv3

国家重点研发计划资助项目

2022YFB3304700

2024

烧结球团
中冶长天国际工程有限责任公司(原长沙冶金设计研究院)

烧结球团

北大核心
影响因子:0.322
ISSN:1000-8764
年,卷(期):2024.49(1)
  • 14