首页|基于Unet网络的烧结混合料粒度检测模型

基于Unet网络的烧结混合料粒度检测模型

扫码查看
目前烧结生产中混合料粒度主要通过人工检测方式获取,该操作方式不连续,且准确度有待提高,难以确定粒度分布与烧结生产参数之间的定量关系.因此,本文提出一种烧结混合料粒度检测模型,该模型采用CCD工业相机和工业光源作为混合料图像的主要采集设备;在图像预处理过程中,使用加权平均法用于图像的灰度化处理;在粒度检测模型构建中,应用Unet网络对烧结混合料图像进行分割处理.结果表明:工业光源的使用提高了采集时的亮度,也能在最大程度上降低外界光线的影响,确保烧结混合料图像的稳定性;图像预处理有助于分辨烧结混合料的颗粒特征,在此基础上,使用中值滤波和直方图均衡化更适合表征图像中混合料颗粒的边缘,并将颗粒内部特征模糊化,对噪声及其他不利因素有很好的去除效果;训练好的Unet网络分割模型对烧结混合料的分割准确率达到91%以上,分割精度误差低于9%,对混合料图像的分割效果较好.该模型的应用可为烧结生产提供及时、准确的粒度分布数据,有助于提高烧结混合料粒度检测效率,帮助企业提升经济效益和社会效益.
Particle size detection model of sintering compound based on Unet network
At present,the particle size of compound in sintering production is mainly obtained by manual inspection,its operation mode is not continuous and accuracy needs to be improved,and it is difficult to determine the quantitative relationship between the particle size distribution and the sintering production parameters.Therefore,a particle size detection model of sintering compound is proposed,which adopts CCD industrial camera and industrial light source as the main acquisition equipment of sintering compound image;in the image pre-processing process,the weighted average method is used for the graying of the image;in the construction of the particle size detection model,the Unet network is applied to the segmentation of the sintering compound image.The results show that the use of industrial light source can improve the brightness when collecting,and also reduce the influence of external light to the greatest extent,so as to ensure the stability of sintering compound image.Image preprocessing is helpful to distinguish the particle characteristics of sintering compound.On this basis,median filtering and histogram equalization are more suitable to characterize the edges of sintering compound particles in the image and blur the internal characteristics of particles,which have a good effect on removing noise and other unfavorable factors.The trained Unet network segmentation model for sintering compound has segmentation accuracy of more than 91%and segmentation accuracy error of less than 9%,which has a good segmentation effect on the compound image.The application of this model can provide timely and accurate particle size distribution data for sintering production,help improve the efficiency of particle size detection of sintering compound,and help enterprises improve economic and social benefits.

iron oresintering compoundparticle size detectionimage preprocessingsegmentationUnet network

刘颂、张振、赵军、张炯明、张琳琛、刘小杰、李福民、吕庆

展开 >

唐山学院人工智能学院,河北唐山 063000

唐山钢铁集团有限责任公司,河北唐山,063000

北京科技大学冶金新技术国家重点实验室,北京 100083

东北大学冶金学院,辽宁沈阳 110819

华北理工大学冶金与能源学院,河北唐山 063017

展开 >

铁矿 烧结混合料 粒度检测 图像预处理 图像分割 Unet网络

唐山市应用基础研究科技计划唐山市人才资助项目

21130233CB202302007

2024

烧结球团
中冶长天国际工程有限责任公司(原长沙冶金设计研究院)

烧结球团

北大核心
影响因子:0.322
ISSN:1000-8764
年,卷(期):2024.49(2)
  • 13