首页|深基坑桩体水平位移滚动预测智能算法研究

深基坑桩体水平位移滚动预测智能算法研究

扫码查看
如何精准预测深基坑施工过程中围护结构的桩体水平位移,是评判深基坑是否处于安全状态的重要指标之一.通过建立遗传算法,网格搜索法以及粒子群算法 3 种算法优化支持向量机模型.采用两种模式对围护结构的桩体水平位移的样本数据进行训练学习,通过不同桩学习后对同一时间的预测结果对比与同一根桩在实现多步滚动预测后的预测结果对比,验证算法适用性.研究结果表明:在现场施工监测数据较少实际情况,遗传算法优于其他两种算法,为围护结构变形提出准确度高的办法;多步滚动预测具有较好的拟合效果,提高了基坑位移趋势预警的准确性.
Research on Intelligent Algorithm for Rolling Prediction of Horizontal Displacement of Deep Foundation Pit Piles
How to accurately predict the horizontal displacement of the enclosure structure during the construction of the deep foundation pit is one of the important indicators to judge whether the deep foundation pit is in a safe state.In this paper,genetic algorithm,grid search method and particle swarm optimization algorithm are established to optimize the support vector machine model.The two models are trained to learn the sample data of horizontal displacement of the enclosure structure,and the applicability of the algorithm is verified by comparing the prediction results of different piles after learning for the same time with the prediction results of the same pile after implementing multi-step rolling prediction.The results of the study show that the genetic algorithm generally outperforms the other two algorithms in the actual situation of less on-site construction monitoring data,and proposes a highly accurate approach for the envelope deformation.The multi-step rolling prediction has a better fitting effect and improves the accuracy of the foundation pit displacement trend warning.

deep foundation pitalgorithm optimizationsupport vector machinerolling prediction

吴波、万雅婕、郑卫强、李雅婷

展开 >

东华理工大学 土木与建筑工程学院,江西 南昌 330013

深基坑 算法优化 支持向量机 滚动预测

国家自然科学基金江西省"双千计划"创新领军人才项目

52168055jxsq2020101001

2024

河北地质大学学报
石家庄经济学院

河北地质大学学报

CHSSCD
影响因子:0.287
ISSN:1007-6875
年,卷(期):2024.47(3)
  • 21