首页|基于数据处理与Elman神经网络模型的泥石流危险性预测

基于数据处理与Elman神经网络模型的泥石流危险性预测

扫码查看
泥石流是一种严重威胁人民生命财产安全的山地地质灾害,对其危险性进行准确预测具有重要意义.以云南省 37 组泥石流样本为例,利用灰色关联度(GRA)技术筛选并排除了对泥石流危险性影响不大的评价指标,最终确定 8 个核心指标,然后利用主成分分析(PCA)方法对核心指标进行降维,提取主成分,将综合指标代入Elman神经网络,对泥石流危险性等级进行预测.结果表明:与其他模型相比,GRA-PCA-Elman模型准确率可达 90.91%,并具备出色的泛化能力,适用于泥石流危险性预测;GRA可以去除对泥石流危险性作用相对较小的评价指标;PCA能够有效消除指标之间的关联信息,提高模型预测准确率.
Risk Prediction of Debris Flow Based on Data Processing and Elman Neural Network Model
Debris flow represents severe geological hazards in mountainous regions,posing significant risks to human lives and property safety.Accurately predicting their hazard level is paramount.This study utilizes 37 sets of debris flow samples from Yunnan Province as a case study.Initially,the Grey Relational Analysis(GRA)technique is applied to filter and exclude evaluation factors with minimal impact on debris flow hazards,resulting in the identification of 8 core indicators.Subsequently,Principal Component Analysis(PCA)is employed to reduce the dimensionality of these core indicators,extracting principal components.These comprehensive indicators are then fed into an Elman neural network to forecast debris flow hazard levels.The findings reveal that,compared to alternative models,the GRA-PCA-Elman model achieves an accuracy rate of 90.91%and exhibits outstanding generalization capabilities,rendering it suitable for debris flow prediction.GRA effectively eliminates evaluation indicators with relatively minor impacts on debris flow hazards,while PCA efficiently removes correlated information among indicators,thereby enhancing the prediction accuracy of the model.

debris flowgray correlationprincipal component analysisElman neural networkhazard prediction

孙晓东、韩宁博、袁颖

展开 >

河北地质大学 城市地质与工程学院,河北 石家庄 050031

河北省地下人工环境智慧开发与管控技术创新中心,河北 石家庄 050031

泥石流 灰色关联度 主成分分析 Elman神经网络 危险性预测

2024

河北地质大学学报
石家庄经济学院

河北地质大学学报

CHSSCD
影响因子:0.287
ISSN:1007-6875
年,卷(期):2024.47(6)