首页|基于YOLOv8的裂缝检测与量化

基于YOLOv8的裂缝检测与量化

扫码查看
结构裂缝的定期检测对于确保结构安全至关重要,目前传统人工检测方法耗时耗力,而且难以实现对裂缝尺寸的量化,针对上述问题,提出一种基于YOLOv8检测与量化裂缝的方法,可提高检测效率并实现裂缝的量化分析.基于YOLOv8算法对裂缝图像进行分割,对分割后的裂缝图像提取计算像素数量,根据实际测量获得的比例因子计算出裂缝真实几何特征.结果显示,YOLOv8分割准确率均达到85%以上,并且对裂缝特征量化实验所得误差百分比均小于4%,拟合优度最大达到0.985 8.所提方法有望为结构裂缝检测提供一个具有前景的解决方案.
Cracks Detection and Quantification Based on YOLOv8
Regular detection of structural cracks is crucial for ensuring structural safety.Currently,traditional manual inspection methods are time-consuming and labor-intensive,and it is difficult to quan-tify the size of cracks.To address these issues,a method based on YOLOv8 for detecting and quantif-ying cracks was proposed,aiming to improve detection efficiency and achieve quantitative crack analysis.The YOLOv8 algorithm was utilized to segment crack images,and the pixel count was extracted from the segmented crack images.Additionally,the real geometric features of cracks were computed based on the scale factors obtained from actual measurements.The results demonstrate that the segmentation accuracy of YOLOv8 exceeds 85%,and the error percentage of quantified crack features is less than 4%in experimental tests,with a maximum goodness of fit of 0.985 8.The proposed method holds promise for providing a prospective solution for structural crack detection.

structural cracksYOLOv8image processinggeometric features

杨烁、匡国冠、刘龙华、贾浩文、张浩

展开 >

石家庄铁道大学土木工程学院,河北石家庄 050043

中国铁路广州局集团有限公司站房建设指挥部,广东广州 510000

石家庄铁道大学安全工程与应急管理学院,河北石家庄 050043

结构裂缝 YOLOv8 图像处理 几何特征

2024

石家庄铁道大学学报(自然科学版)
石家庄铁道大学

石家庄铁道大学学报(自然科学版)

CSTPCD
影响因子:0.757
ISSN:2095-0373
年,卷(期):2024.37(3)