首页|中医因素参与的弥漫大B细胞淋巴瘤治疗后进展预测模型

中医因素参与的弥漫大B细胞淋巴瘤治疗后进展预测模型

扫码查看
目的:构建一个中医因素参与的弥漫大B细胞淋巴瘤(DLBCL)化疗后进展风险模型,为DLBCL治疗提供依据.方法:回顾性分析2014年1月至2020年12月上海市中医医院的初发DLBCL患者110例,依据复发情况分为观察组与对照组,其中观察组32例,对照组78例,随访2年.将年龄、Karnofsky功能状态评分(KPS)、美国东部肿瘤协作组功能状态评分(ECOG评分)、基础疾病数、中药服用时间、性别、分期、B症状(a.不明原因发热,非感染性发热,体温>38 ℃;b.夜间盗汗;c.6个月内体质量下降10%,以上3条满足1条即符合B症状.)、受累淋巴结≥5个、大包块、结外病变、生发中心、初次治疗结局和服用中药13个变量纳入分析,基于LASSO回归与多变量Cox回归的结果,开发列线图模型,分析是否服用中药及服用中药时间是否可改善DLBCL患者预后.通过受试者工作特征曲线(ROC)、ROC曲线下面积(AUC)、临床决策曲线(DCA)、校准曲线等评估模型的效能,并通过Bootstrap法自抽样验证模型的稳定性.结果:LASSO回归与Cox回归结果表明中医因素:中药服用时间为DLBCL无进展生存时间(PFS)保护因素(P<0.05),基础疾病数、大包块、初次治疗结局是DLBCL PFS的危险因素(P<0.05).整合到模型中,6、12、24个月模型的ROC曲线下面积分别为0.85、0.93、0.92,均大于单个危险因素;校准曲线接近理想曲线.结论:本研究根据LASSO回归与Cox回归筛选的DLBCL患者化疗后进展的影响因素:中药服用时间、基础疾病数、大包块、初次治疗结局构建了列线图预测模型,经Bootstrap内部验证后,该预测模型具有较好的效能与稳定性,能够较为准确地预测DLBCL患者化疗后6、12、24个月复发的发生风险.
A Prognostic Model for the Progression of Diffuse Large B-cell Lymphoma after Treatment Involving Traditional Chinese Medicine Factors
Objective;To establish a risk model for progression after chemotherapy in diffuse large B-cell lymphoma(DLBCL)in-volving traditional Chinese medicine(TCM)factors,providing a basis for DLBCL treatment.Methods:A retrospective analysis was conducted on 110 newly diagnosed DLBCL patients from Shanghai Municipal Hospital of Traditional Chinese Medicine between Jan-uary 2014 and December 2020.Patients were divided into an observation group(32 cases)and a control group(78 cases)based on relapse status,with a 2-year follow-up.The analysis incorporated 13 variables,including age,Karnofsky Performance Status(KPS),Eastern Cooperative Oncology Group(ECOG)performance status,number of comorbidities,duration of Chinese medicine usage,sex,disease stage,B symptoms(a.unexplained fever,non-infectious fever,body temperature>38 ℃;b.night sweats;c.weight loss of ≥ 10%in the past 6 months.Any one of these indicates B symptoms),number of involved lymph nodes≥5,large masses,extran-odal involvement,germinal center,initial treatment outcome,and Chinese medicine usage.LASSO regression and multivariate Cox regression were used to develop a nomogram model,analyzing whether Chinese medicine usage and duration could improve the prog-nosis of DLBCL patients.Model performance was assessed using receiver operating characteristic(ROC)curves,area under the curve(AUC),decision curve analysis(DCA),and calibration curves,with Bootstrap resampling to verify model stability.Results:LASSO and Cox regression results indicated that TCM factors,specifically Chinese medicine usage duration,were protective factors for progression-free survival(PFS)in DLBCL(P<0.05),while the number of comorbidities,large masses,and initial treatment outcome were risk factors for DLBCL PFS(P<0.05).The model integrated these variables,with ROC curve AUCs at 6,12,and 24 months of 0.85,0.93,and 0.92,respectively,all higher than individual risk factors.The calibration curve was close to the ideal line.Conclusion:This study established a nomogram prognostic model for post-chemotherapy progression in DLBCL patients based on the influencing factors identified by LASSO and Cox regressions,i.e.,Chinese medicine usage duration,number of comorbidi-ties,large masses,and initial treatment outcome.After internal validation through Bootstrap resampling,the model showed good per-formance and stability,accurately predicting the risk of relapse in DLBCL patients at 6,12,and 24 months after chemotherapy.

Diffuse large B-cell lymphomaProgression-free survivalClinical prognostic modelTraditional Chinese medicine factorsNomogram

胡明、司华玟、蔡晶晶、魏聪敏、张红玉、鲍计章、胡琦

展开 >

上海中医药大学附属市中医医院血液病科,上海,200071

上海中医药大学,上海,200071

上海中医药大学附属市中医医院临床血液学中心,上海,200071

弥漫大B细胞淋巴瘤 无进展生存期 临床预测模型 中医因素 诺模图

2024

世界中医药
世界中医药学会联合会

世界中医药

CSTPCDCHSSCD北大核心
影响因子:1.266
ISSN:1673-7202
年,卷(期):2024.19(19)