通过在格雷码遗传算法进化过程中加入单纯形搜索算子,并利用格雷码遗传算法和单纯形法所得到的优秀个体群,作为变量新的变化范围,逐步缩小搜索空间,自动向最优解收缩,提出了水环境模型参数识别的一种新方法--格雷码混合加速遗传算法(GCHAGA), 给出了实施该算法的详细步骤.对 GCHAGA的收敛性和全局优化性进行了理论和实例分析,并在确定河流横向扩散系数等参数识别问题中,GCHAGA得到了精度较高的全局最优解.与格雷码遗传算法(GCGA)和常规优化方法相比,GCHAGA具有精度高、速度快和适用性强等特点,是一种既可以较大概率搜索全局最优解,又能进行局部细致搜索的较好的非线性优化方法,可广泛应用于各种水环境优化问题中.