首页|全球气象预报驱动流域水文预报研究进展与展望

全球气象预报驱动流域水文预报研究进展与展望

扫码查看
全球气象模型及新兴人工智能模型为流域水文预报提供了日、次季节、季节等不同时间尺度的海量气象预报数据.与此同时,基于气象预报开展水文预报,涉及到数据获取、模型构建、评估检验等技术问题.本文以全球气象预报相关的研究计划为切入点,调研现有的1 d至2周小时尺度中短期天气预报、1~60d次季节尺度气象预报、1~12个月季节尺度气象预报以及新兴的人工智能气象预报;梳理气象预报驱动下流域水文预报模型方法,阐述气象预报订正、水文模型设置和预报评估检验等技术环节.基于全球气象预报生成实时和回顾性流域水文预报,定量检验不同预见期下预报精度以评估相关模型方法的预报性能,为水利工程预报-调度实践应用打下坚实的基础.
Research progresses and prospects of catchment hydrological forecasting driven by global climate forecasts
Global climate models and emerging artificial intelligence models generate big climate forecasts data for catchment hydrological forecasting at daily,sub-seasonal and seasonal timescales.The utilization of global climate forecasts to drive catchment hydrological models are confronted with the technical issues of climate forecast data retrieval,hydrological forecasting model set-up and verification of hydro-climatic forecasts.Starting with international collaborative research projects on global climate forecasting,this paper conducts a survey of short-term weather forecasts for the next 1 day to 2 weeks,sub-seasonal climate forecasts for the next 1 to 60 days,seasonal climate forecasts for the next 1 to 12 months and artificial intelligence-based climate forecasts.Furthermore,the processes of catchment hydrological forecasting driven by global climate forecasts are illustrated by detailing the technical aspects on the calibration of climate forecasts,the setting-up of hydrological models and the verification of predictive performance.By generating real-time and retrospective catchment hydrological forecasts from global climate forecasts,the efficacy of forecasting models can be quantitatively examined by verifying forecast skill at different lead times,laying a solid basis for practical forecasts-based operations of hydraulic infrastructure.

global climate modelclimate forecastscatchment hydrological modelhydrological forecastsreal-time forecastsretrospective forecastsforecast verification

赵铜铁钢、张弛、田雨、李昱、陈泽鑫、陈晓宏

展开 >

中山大学水资源与环境研究中心,广东广州 510275

大连理工大学水利工程学院,辽宁大连 116024

中国水利水电科学研究院,北京 100038

全球气象模型 气象预报 流域水文模型 水文预报 实时预报 回顾性预报 预报检验

国家重点研发计划资助项目国家自然科学基金资助项目

2023YFF080490052379033

2024

水科学进展
南京水利科学研究院 水利部 交通运输部 国家能源局 中国水利学会

水科学进展

CSTPCD北大核心
影响因子:1.931
ISSN:1001-6791
年,卷(期):2024.35(1)
  • 65