首页|基于可解释强化学习的智能虚拟电厂最优调度

基于可解释强化学习的智能虚拟电厂最优调度

扫码查看
随着电动汽车的不断普及,能源系统日益复杂.虚拟电厂(VPP)可以通过物联网和人工智能技术,将分布式电源、储能系统、可控负荷以及EV等分布式能源进行聚合和协调优化,有助于提升能源的使用效率,并促进非可再生能源的消纳,增强电网稳定性.现阶段人工智能技术在电力系统等安全要求较高的应用领域缺乏可靠性和透明度,可能导致用户和运营商难以理解算法如何做出特定的能源调配决策.针对人工智能技术下的VPP实现最优调度并兼顾解释其决策过程的平衡问题,提出一种可解释强化学习的交互式框架,使用近端策略优化算法实现VPP的最优调度,并使用决策树建立一种可解释性强化学习框架,用于提供透明的决策支持,使非专业用户能够理解人工智能在调节能源系统方面的决策过程.试验表明,与传统强化学习优化方法相比,该方法不仅提高了能源分配的效率,而且通过增强模型的可解释性,加强了用户对智能VPP管理系统的信任.
Optimal scheduling of intelligent virtual power plants based on explainable reinforcement learning
With the increasing popularity of electric vehicles(EVs),energy systems are becoming more complex.Virtual power plants(VPPs)can aggregate and optimize distributed energy resources such as distributed generation,energy storage systems,controllable loads,and EVs through internet of things(IoT)and artificial intelligence(AI)technologies,enhancing energy efficiency and facilitating the consumption of non-renewable energy while reinforcing grid stability.However,current AI technologies lack reliability and transparency in high-safety applications like power systems,potentially making it challenging for users and operators to understand how algorithms make specific energy allocation decisions.To address the balance between achieving optimal scheduling of VPPs utilizing AI and explaining the decision-making processes,this study proposed an interactive framework based on explainable reinforcement learning.This framework employed the proximal policy optimization(PPO)algorithm for optimal scheduling of VPPs and constructed an explainable reinforcement learning framework using decision trees to provide transparent decision support that enabled non-expert users to understand AI's decision-making processes in regulating energy systems.The results indicated that compared to traditional reinforcement learning optimization methods,this approach not only improved energy allocation efficiency but also strengthened user trust in intelligent VPP management systems by enhancing model interpretability.

virtual power plantelectric vehicleproximal policy optimization algorithmreinforcement learningdecision treeexplainable frameworkdistributed energyartificial intelligence

袁孝科、沈石兰、张茂松、石晨旭、杨凌霄

展开 >

安徽大学,人工智能学院,合肥 230601

广东电网有限公司广州供电局,广州 510630

安徽大学,电气工程与自动化学院,合肥 230601

虚拟电厂 电动汽车 近端策略优化算法 强化学习 决策树 可解释性框架 分布式电源 人工智能

2025

综合智慧能源
国电郑州机械设计研究所 中国华电工程(集团)有限公司

综合智慧能源

影响因子:0.221
ISSN:2097-0706
年,卷(期):2025.47(1)